Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
J Anim Sci ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795007

ABSTRACT

The present study sought to assess the effects of manganese complexes with lysine and glutamic acid (Mn-LG) as manganese (Mn) sources on growth performance, trace element deposition, antioxidant capacity, and metacarpal strength in weaned piglets. The study involved 288 healthy Duroc × Landrace × Yorkshire piglets that were weaned at 25-28 days of age and weighed 8.66±0.96 kg. These piglets were randomly divided into six groups: a control group (Mn-LG-0, receiving a basal diet without Mn supplementation), a Mn sulfate group (basal diet supplemented with 40 mg·kg-1 diet of Mn, Mn-S-40 group), and four Mn-LG groups (Mn-LG-20, Mn-LG-40, Mn-LG-60, Mn-LG-80, supplemented with 20, 40, 60, and 80 mg·kg-1 Mn from Mn-LG in the basal diet). Grouping began at weaning as the 0th day of the experiment. The corn-soybean-based basal diet during the early (d 0-14) and late (d 15-42) phases of the experiment contained 20.88 and 30.12 mg·kg-1 Mn, respectively. Blood samples were collected on days 14 and 42, and pigs were sacrificed for sample collection on day 42. The results indicated no significant differences in average daily gain, average daily feed intake, or feed-to-gain ratio among the groups (P > 0.05). The diarrhea rates of all Mn-LG groups and the Mn-S-40 group were significantly lower in the 0-14 d and during the entire experimental period than in the Mn-LG-0 group (P < 0.001). The Mn-LG-40 group exhibited a significant increase in liver Mn concentration and serum Mn superoxide dismutase (Mn-SOD) activity on d 42 (P < 0.01), as well as a significant decrease in fecal Mn concentration (P < 0.05), compared to those of the Mn-S-40 group. Significant differences (P < 0.05) were detected in the serum, liver, and fecal Mn concentrations, as well as in the serum and liver Mn-SOD activity, across the different Mn-LG groups. The serum and fecal Mn concentrations and serum Mn-SOD activity increased linearly or quadratically (P < 0.01) with increasing Mn-LG supplementation. No significant differences (P > 0.05) were found in kidney, heart, or metacarpal bone Mn concentrations or in bone strength indices. In summary, compared with the Mn-LG-0 diet, dietary supplementation with Mn-LG enhanced serum Mn deposition and Mn-SOD activity and decreased the incidence of diarrhea. Additionally, the fecal Mn concentration was lower in the Mn-LG group than in the inorganic group at equivalent dosages.

2.
J Pharm Biomed Anal ; 245: 116161, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38714135

ABSTRACT

In this study, Fe3O4@ZnCr-layered double hydroxide/zeolitic imidazolate frameworks-8 (MLDH/ZIF-8) magnetically functionalized composites were synthesized by co-precipitation and in situ growth based on the advantages of LDHs and ZIF-8 using Fe3O4 nanoparticles as a magnetic substrate to obtain adsorbents with excellent performance. Moreover, the composite was used for the efficient enrichment of flavonoids in Chinese herbal medicines. The internal structures and surface properties were characterized by SEM, Fourier transform infrared spectroscopy, X-ray diffraction and so on. MLDH/ZIF-8 exhibited a large specific surface area and good paramagnetic properties. The MLDH/ZIF-8 magnetic composite was used as a magnetic solid-phase extraction (MSPE) adsorbent, and a MLDH/ZIF-8 MSPE-pressurized capillary electrochromatography coupling method was developed for the separation and detection of flavonoids (luteolin, kaempferol and apigenin) in a sample of the Chinese herb Ohwia caudata (Thunberg) H. Ohashi. The relevant parameters affecting the extraction efficiency were optimized to determine the ideal conditions for MSPE. 5 mg of adsorbent in sample solution at pH 6, vortex extraction for 5 min, elution with 1.5 mL of ethyl acetate for 15 min. The method showed good linearity in the concentration range of 3-50 µg mL-1 with correlation coefficients of 0.9934-0.9981, and displayed a relatively LODs of 0.07-0.09 µg mL-1. The spiked recoveries of all analytes ranged from 84.5% to 122.0% with RSDs (n=3) between 4.5% and 7.7%. This method is straightforward and efficient, with promising potential in the separation and analysis of active ingredients in various Chinese herbal medicines.


Subject(s)
Drugs, Chinese Herbal , Flavonoids , Hydroxides , Solid Phase Extraction , Flavonoids/isolation & purification , Flavonoids/analysis , Flavonoids/chemistry , Solid Phase Extraction/methods , Hydroxides/chemistry , Drugs, Chinese Herbal/chemistry , Adsorption , Magnetite Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Spectroscopy, Fourier Transform Infrared/methods
3.
Cancer Immunol Immunother ; 73(6): 99, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619623

ABSTRACT

PURPOSE: Neoadjuvant PD-1 blockade combined with chemotherapy is a promising treatment for resectable non-small cell lung cancer (NSCLC), yet the immunological mechanisms contributing to tumor regression and biomarkers corresponding to different pathological responses remain unclear. METHODS: Using dynamic and paired blood samples from NSCLC patients receiving neoadjuvant chemoimmunotherapy, we analyzed the frequencies of CD8 + T-cell and Treg subsets and their dynamic changes during neoadjuvant treatment through flow cytometry. Cytokine profiles and function-related gene expression of CD8 + T cells and Tregs were analyzed through flow cytometry and mRNA-seq. Infiltrating T-cell subsets in resected tissues from patients with different pathological responses were analyzed through multiplex immunofluorescence. RESULTS: Forty-two NSCLC patients receiving neoadjuvant chemoimmunotherapy were enrolled and then underwent surgical resection and pathological evaluation. Nineteen patients had pCR (45%), 7 patients had MPR (17%), and 16 patients had non-MPR (38%). In patients with pCR, the frequencies of CD137 + CD8 + T cells (P = 0.0475), PD-1 + Ki-67 + CD8 + T cells (P = 0.0261) and Tregs (P = 0.0317) were significantly different from those of non-pCR patients before treatment. pCR patients usually had low frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs, and their AUCs were higher than that of tissue PD-L1 expression. Neoadjuvant chemoimmunotherapy markedly improved CD8 + T-cell proliferation and activation, especially in pCR patients, as the frequencies of CD137 + CD8 + (P = 0.0136) and Ki-67 + CD8 + (P = 0.0391) T cells were significantly increased. The blood levels of cytokines such as IL-2 (P = 0.0391) and CXCL10 (P = 0.0195) were also significantly increased in the pCR group, which is consistent with the high density of activated cytotoxic T cells at the tumor site (P < 0.0001). CONCLUSION: Neoadjuvant chemoimmunotherapy drives CD8 + T cells toward a proliferative and active profile. The frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs at baseline might predict the response to neoadjuvant chemoimmunotherapy in NSCLC patients. The increase in IL-2 and CXCL10 might reflect the chemotaxis and enrichment of cytotoxic T cells at the tumor site and a better response to neoadjuvant chemoimmunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Neoadjuvant Therapy , Cytokines , Interleukin-2 , Ki-67 Antigen , Programmed Cell Death 1 Receptor , Lung Neoplasms/drug therapy , T-Lymphocyte Subsets
4.
Clin Neurol Neurosurg ; 240: 108283, 2024 05.
Article in English | MEDLINE | ID: mdl-38608350

ABSTRACT

OBJECTIVES: The relationship between cognitive function and frailty in moyamoya disease (MMD) remains unclear, and the underlying mechanism is poorly understood. This study aims to investigate whether white matter hyperintensities (WMHs) mediate the association between frailty and cognitive impairment in MMD. METHODS: Patients with MMD were consecutively enrolled in our study from January 2021 to May 2023. Pre-admission frailty and cognition were assessed using the Clinical Frailty Scale (CFS) and cognitive tests, respectively. Regional deep WMH (DWMH) and periventricular WMH (PWMH) volumes were calculated using the Brain Anatomical Analysis using Diffeomorphic deformation toolbox based on SPM 12 software. Multivariate logistic regression analysis was conducted to evaluate the association between frailty and cognitive function in MMD. Mediation analysis was performed to assess whether WMHs explained the association between frailty and cognition. RESULTS: A total of 85 patients with MMD were enrolled in this study. On the basis of the CFS scores, 24 patients were classified as frail, 38 as pre-frail, and 23 as robust. Significant differences were observed in learning, memory, processing speed, executive functions, and semantic memory among the three groups (p < 0.001). Frailty was independently associated with memory and executive functions (p < 0.05); even after controlling for WMH. Mediation analysis indicated that the associations of frailty with memory and executive functions were partially mediated by WMH, DWMH, and PWMH (p < 0.05). CONCLUSION: Frailty is significantly correlated with a higher risk of cognitive impairment in MMD, even after adjusting for other covariates. WMHs partially mediate the association between frailty and cognitive impairment.


Subject(s)
Cognitive Dysfunction , Frailty , Moyamoya Disease , White Matter , Humans , Male , Female , Cognitive Dysfunction/etiology , Moyamoya Disease/complications , Moyamoya Disease/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Frailty/complications , Frailty/diagnostic imaging , Middle Aged , Adult , Magnetic Resonance Imaging , Neuropsychological Tests
5.
Sci Total Environ ; 927: 172039, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38552977

ABSTRACT

Alpine grassland is the main vegetation on the Qinghai-Tibetan Plateau (QTP) and exhibits high sensitivity to extreme weather events. With global warming, extreme weather events are projected to become more frequent on the QTP. However, the impact of these extreme weather events on the carbon cycle of alpine grassland remains unclear. The long-term in-situ carbon fluxes data was collected from 2013 to 2022 at an alpine grassland site to examine the impact of extreme low air temperature (ELT) and reduced moisture (including air and soil) on carbon fluxes during the growing season. Our findings indicated that a significant increase in net ecosystem production (NEP) after 2019, with the average NEP increasing from 278.91 ± 43.27 g C m-2 year-1 during 2013-2018 to 415.45 ± 45.29 g C m-2 year-1 during 2019-2022. The ecosystem carbon use efficiency (CUE) increased from 0.38 ± 0.06 during 2013-2018 to 0.62 ± 0.11 during 2019-2022. By combining concurrently measured environmental factors and remote sensing data, we identified the factors responsible for the abrupt change in the NEP after 2019. This phenomenon was caused by an abrupt decrease in ecosystem respiration (Reco) after 2019, which resulted from the inhibition imposed by ELT and reduced moisture. In contrast, gross primary production (GPP) remained stable from 2013 to 2022, which was confirmed by the remotely sensed vegetation index. This study highlights that combined extreme weather events associated with climate change can significantly impact the NEP of alpine grassland, potentially affecting different carbon fluxes at different rates. These findings provide new insights into the mechanisms governing the carbon cycle of alpine grassland.


Subject(s)
Carbon Cycle , Environmental Monitoring , Grassland , Tibet , Climate Change , Cold Temperature , Ecosystem
6.
Phys Chem Chem Phys ; 26(13): 10202-10213, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497211

ABSTRACT

Designing an electrocatalyst with high efficiency and product selectivity is always crucial for an electrocatalytic CO2 reduction reaction (CO2RR). Inspired by the great progress of two-dimensional (2D) nanomaterials growing on Cu surfaces and their promising CO2RR catalytic efficiencies at their interfaces, the unique performance of Cu-based 2D materials as high-efficiency and low-cost CO2RR electrocatalysts has attracted extensive attention. Herein, based on density functional theory (DFT) calculations, we proposed a composite structure of graphitic carbon nitride (g-C3N4) fragments loaded on a Cu surface to explore the CO2RR catalytic property of the interface between g-C3N4 and the Cu surface. Three composite interfaces of C3N4/Cu(111), C3N4/Cu(110) and C3N4/Cu(100) have been studied by considering the reaction sites of vertex nitrogen atoms, edge nitrogen atoms and the nearby Cu atoms. It was found that the C3N4/Cu interfaces where nitrogen atoms contact the Cu substrate present competitive CO2RR activity. Among them, C3N4/Cu(111)-N3 exhibited a better activity for CH3OH production, with a low overpotential of 0.38 V. For HCOOH and CH4 production, C3N4/Cu(111)-Cu and C3N4/Cu(100)-N1 have overpotentials of 0.26 V and 0.44 V. The electronic analysis indicates the electron transfer from the Cu substrate to the g-C3N4 fragment and mainly accumulates on the nitrogen atoms of the interface. Such charge accumulation can activate the adsorbed CO bond of CO2 and lead to lower energetic barriers of CO2RR. DFT calculations indicate that the boundary nitrogen sites reduced the energy barrier of *CHO, which is crucial for CO2RR, compared with that of the pristine Cu surface. Our study explores a new Cu-based electrocatalyst and indicates that the C3N4/Cu interface can enhance the activities and selectivity of CO2RR and open a new strategy to design high-efficiency electrocatalysts for CO2RR.

7.
Appl Spectrosc ; 78(5): 551-560, 2024 May.
Article in English | MEDLINE | ID: mdl-38389424

ABSTRACT

Aminophylline (AMP) is a bronchodilator. The therapeutic and toxic doses are very close. Therefore, therapeutic drug monitoring (TDM) of AMP is essential in clinical practice. Microgels were synthesized by free radical precipitation polymerization. Silver@poly(N-isopropyl acrylamide) (Ag@PNIPAM) hybrid microgels were obtained by loading silver (Ag) nanoparticles into the three-dimensional network of the microgels by in situ reduction. The microgel is a three-dimensional reticular structure with tunable pore size, large specific surface area, and good biocompatibility, which can be used as a sorbent for solid-phase extraction (SPE) of target molecules in complex matrices and as a surface-enhanced Raman spectroscopy (SERS) substrate. We optimized the conditions affecting SERS enhancement, such as silver nitrate (AgNO3) concentration and SPE time, according to the SERS strategy of Ag@PNIPAM hybrid microgels to achieve label-free TDM for trace AMP in human serum. The results showed good linearity between the logarithmic concentration of AMP and its SERS intensity in the range of 1-1.1 × 102 µg/mL, with a correlation coefficient (R2) of 0.9947 and a low detection limit of 0.61 µg/mL. The assay accuracy was demonstrated by spiking experiments, with recoveries ranging from 93.0 to 101.8%. The method is rapid, sensitive, reproducible, requires simple sample pretreatment, and has good potential for use in clinical treatment drug monitoring.


Subject(s)
Aminophylline , Limit of Detection , Microspheres , Silver , Solid Phase Extraction , Spectrum Analysis, Raman , Aminophylline/blood , Aminophylline/chemistry , Humans , Spectrum Analysis, Raman/methods , Solid Phase Extraction/methods , Silver/chemistry , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Acrylic Resins/chemistry , Drug Monitoring/methods , Bronchodilator Agents/blood , Bronchodilator Agents/chemistry
8.
Cancer Cell Int ; 24(1): 84, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402182

ABSTRACT

BACKGROUND: The incidence of multiple primary cancers (MPC), especially involving primary lung cancer (PLC) and primary hematologic malignancies (PHM), is rising. This study aims to analyze clinicopathological features, gene abnormalities, and prognostic outcomes in individuals diagnosed with PLC-PHM MPC. METHODS: A retrospective analysis included 89 patients diagnosed with PLC-PHM MPC at the Respiratory or Hematology Departments of Ruijin Hospital from 2003 to 2022 (a total of 842,047 people). Next-generation sequencing (NGS) assessed lung cancer specimens, while Polymerase Chain Reaction (PCR) and NGS were used for hematologic malignancy specimens. Statistical analysis involved survival analysis and Cox regression. RESULTS: PLC-PHM MPC incidence surged from 1.67 per year (2011-2013) to 16.3 per year (2020-2022). The primary demographic for PLC-PHM MPC consists predominantly of elderly (average age 66 years) males (59.6%), with a high prevalence of metachronous MPC (89.9%). The prevailing histological types were lung adenocarcinoma (70.8%) in lung cancer (LC) and mature B-cell lymphomas (50.6%) in hematologic malignancies (HM). Notably, in a molecular testing cohort of 38 LC patients, 84.2% of lung cancer cases exhibited driver mutations, in which EGFR mutations frequence prevalent was 74.2%. In total group of 85 cases achieved a median overall survival (mOS) of 46.2 months, with a 5-year survival rate of 37.9% and advanced LC patients with LC gene mutations achieved a mOS was 52.6 months, with a 5-year OS rate of 30.6%. The median progression-free survival (PFS) following first-line treatment of 11 advanced patients with lung cancer-associated driver gene mutations is 26.6 months. Multivariate Cox regression revealed a favorable OS associated with surgery for LC, favorable PS score, adenocarcinoma pathology of LC, and the presence of genetic abnormalities associated with HM. CONCLUSION: PLC-PHM MPC incidence is rising, characterized by a significant proportion of lung adenocarcinoma and a high prevalence of positive driver genes, especially in EGFR. Despite suffering from two primary tumors, the PLC-PHM MPC patients had superior data of both PFS and OS, suggesting an inherently intricate background of genetic abnormalities between the two kinds of tumors.

9.
Front Genet ; 15: 1351429, 2024.
Article in English | MEDLINE | ID: mdl-38415055

ABSTRACT

Introduction: Intramuscular fat content (IFC) and meat color are vital indicators of pork quality. Methods: A significant positive correlation between IFC and redness of meat color (CIE a* value) indicates that these two traits are likely to be regulated by shared molecular pathways.To identify candidate genes, hub genes, and signaling pathways that regulate these two traits, we measured the IFC and CIE a* value in 147 hybrid pigs, and selected individuls with extreme phenotypes for transcriptome analysis. Results: The results revealed 485 and 394 overlapping differentially expressed genes (DEGs), using the DESeq2, limma, and edgeR packages, affecting the IFC and CIE a* value, respectively. Weighted gene co-expression network analysis (WGCNA) identified four modules significantly correlated with the IFC and CIE a* value. Moreover, we integrated functional enrichment analysis results based on DEGs, GSEA, and WGCNA conditions to identify candidate genes, and identified 47 and 53 candidate genes affecting the IFC and CIE a* value, respectively. The protein protein interaction (PPI) network analysis of candidate genes showed that 5 and 13 hub genes affect the IFC and CIE a* value, respectively. These genes mainly participate in various pathways related to lipid metabolism and redox reactions. Notably, four crucial hub genes (MYC, SOX9, CEBPB, and PPAGRC1A) were shared for these two traits. Discussion and conclusion: After functional annotation of these four hub genes, we hypothesized that the SOX9/CEBPB/PPARGC1A axis could co-regulate lipid metabolism and the myoglobin redox response. Further research on these hub genes, especially the SOX9/CEBPB/PPARGC1A axis, will help to understand the molecular mechanism of the co-regulation of the IFC and CIE a* value, which will provide a theoretical basis for improving pork quality.

10.
BMC Geriatr ; 24(1): 55, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216896

ABSTRACT

BACKGROUND: Numerous studies have demonstrated a positive correlation between diet quality and cognitive performance, indicating that improving diet quality may be beneficial in preventing cognitive decline in older adults. However, few study has investigated the causal relationship between diet quality and cognitive performance. The purpose of this study is to evaluate the causal effects of diet quality on cognitive performance in Chinese adults aged 55 years and older. Particularly, we utilize the Chinese Diet Quality Index (CHEI), a dietary assessment tool tailored for Chinese populations, as a proxy for older adults' diet quality. METHODS: Data were obtained from the China Health and Nutrition Survey (CHNS) ([Formula: see text], [Formula: see text]55 years old) conducted in 2004 and 2006. Cognitive function was tested by a subset of items from the Telephone Interview for Cognitive Status-Modified (TICS-m). Data on dietary intake was retrieved from three consecutive 24 hour recalls by participants and its quality was assessed by the 17-items Chinese Healthy Eating Index (CHEI). An Instrumental Variable technique was used to deal with the potential endogeneity of dietary quality. The instrumental variable used in our study is the community mean of CHEI. RESULTS: After adjusting for socio-demographic factors (age, gender, education, per capita household income), lifestyle habits (smoking, alcohol consumption, physical activity, BMI), and chronic diseases (hypertension, diabetes), our findings revealed that improving diet quality had a significant positive effect on cognitive performance ([Formula: see text]), particularly in females aged 55-65 years ([Formula: see text]) and females with primary education and below ([Formula: see text]). CONCLUSION: Our study suggests that improving diet quality and adhering to the Dietary Guidelines for Chinese may enhance cognitive performance in Chinese adults aged 55 years and older.


Subject(s)
Diet , Nutritional Status , Female , Humans , Aged , Nutrition Surveys , Diet, Healthy , Cognition , China/epidemiology
11.
Cancer Med ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38164654

ABSTRACT

PURPOSE: Among high-risk acute lymphoblastic leukemia (ALL) patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), those with positive minimal residual disease (MRD) are susceptible to poor outcomes. Therefore, it is necessary to determine the most suitable preparatory regimen for these patients. METHODS: Data were analyzed from 141 patients who received allo-HSCT and were diagnosed with high-risk ALL. These patients underwent intensified conditioning regimens, including either total marrow and lymphoid irradiation (TMLI)-etoposide (VP16)-cyclophosphamide (CY) or busulfan (BU)-VP16-CY between October 2016 and November 2022. A total of 141 individuals were in complete remission (CR) before transplantation and, among all patients, 90 individuals exhibited a negative MRD status and 51 patients had a positive MRD status. RESULTS: In patients who tested negative for MRD, the incidence of relapse within a 2-year timeframe was 25.0% (24.8%-25.5%), compared with 32.2% (31.2%-33.2%) in MRD-positive patients; however, this difference was not statistically significant. There were no significant differences in the 2-year disease-free survival (DFS) and 2-year overall survival (OS) rates between the MRD-negative and MRD-positive groups (DFS: 67.2% (57.9%-78.1%) vs. 55.5% (42.6%-72.3%); OS: 69.0% (61.9%-88.2%) vs. 66.7% (53.9%-82.5%)). Furthermore, no notable variations were observed in the occurrence of transplant-related mortality (TRM) and graft-versus-host disease (GVHD) across the two groups. CONCLUSION: This study reveals the benefits of TMLI-VP16-CY and BU-VP16-CY conditioning regimens in high-risk ALL patients with CR and MRD-positive status. A large-scale prospective clinical trial is warranted in the future.

12.
Br J Haematol ; 204(1): 283-291, 2024 01.
Article in English | MEDLINE | ID: mdl-37984846

ABSTRACT

To compare the clinical efficacy of porcine anti-lymphocyte globulin (p-ALG) and rabbit anti-thymocyte globulin (r-ATG) in the treatment of haematological malignancies using haploidentical haematopoietic stem cell transplantation (haplo-HSCT), this study was conducted. The incidences of neutrophil and platelet engraftment, respectively, were 100%, 93.6% and 94.4%; 100%, 93.6% and 90.3% in p-ALG 75 mg/kg (n = 57), p-ALG 90 mg/kg (n = 49), and r-ATG 7.5 mg/kg (n = 72). The median time to neutrophil engraftment and platelet engraftment were 11, 12 and 12 days (p = 0.032); 13, 14 and 13 days (p = 0.013), respectively. The incidence of grades II-IV acute graft-versus-host disease and cumulative incidence of chronic graft-versus-host disease were 16.7% versus 12.5% versus 13.3% (p = 0.817) and 14.7% versus 12.1% versus 19.5% in p-ALG 75 mg/kg, p-ALG 90 mg/kg and r-ATG groups. Notably, the cytomegalovirus infection rate in the p-ALG 75 mg/kg group was significantly lower than the other two groups. The cumulative incidence of 2-year relapse and 2-year overall survival rates were similar (p = 0.901, p = 0.497). The lower dose of p-ALG (75 mg/kg) had a similar efficacy and safety profile compared with r-ATG (7.5 mg/kg) in the setting of haplo-HSCT. Therefore, p-ALG (75 mg/kg) may be an appropriate alternative to r-ATG in the conditioning regimen of haplo-HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Swine , Antilymphocyte Serum/therapeutic use , T-Lymphocytes , Neoplasm Recurrence, Local/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Transplantation Conditioning/adverse effects , Retrospective Studies
13.
Anim Nutr ; 16: 34-44, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38131029

ABSTRACT

Skatole, a strong fecal odor substance, is generated through microbial degradation of tryptophan in the animal hindgut. It easily accumulates in adipose tissue and affects meat quality. In this study, the effect of mulberry leaf supplementation on skatole in finishing pigs was studied. In a 35-day trial, 20 finishing pigs (barrows and gilts) were fed with a basal diet or basal diet with 6% mulberry leaves. Growth performance of the pigs (n = 10) was automatically recorded by a performance-testing feeder system and 8 pigs in each treatment were slaughtered and sampled for the remaining tests. Skatole and short-chain fatty acids were detected using HPLC and gas chromatography, respectively. Fecal microbiota were analyzed using 16S rRNA gene sequencing. The metabolomics analysis of feces and serum was performed with UHPLC-MS/MS. The major cytochrome P450 (CYP) enzymes that catalyze skatole degradation in the liver were tested by using RT-PCR and Western blot. Effects of major bioactive compounds in mulberry leaves on the CYP genes were verified in the hepatic cell line HepG2 in an in vitro test (n = 3). In finishing pigs, mulberry leaf supplementation had no significant effect on the average daily gain, average daily feed intake, and feed conversion ratio (P > 0.05), but reduced skatole levels in feces, serum, and backfat (P < 0.05), and increased acetic acid levels in feces (P = 0.027). Mulberry leaf supplementation decreased the relative abundance of the skatole-producing bacteria Megasphaera and Olsenella (P < 0.05). Indole-3-acetic acid, the intermediate that is essential for skatole production, was significantly reduced in feces by mulberry leaf supplementation (P < 0.05) and was positively correlated with skatole content in feces (P = 0.004). In pigs treated with mulberry leaves, liver CYP1A1 expression was increased (P < 0.05) and was negatively correlated with skatole content in backfat (P = 0.045). The in vitro test demonstrated that mulberry leaf polyphenols and polysaccharides could directly stimulate CYP1A1 expression in hepatic cells. These findings suggest that mulberry leaf supplementation reduces skatole production and deposition in finishing pigs by regulating the gut microbiota and promoting skatole degradation in liver.

14.
Pathol Res Pract ; 253: 155048, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147724

ABSTRACT

BACKGROUNDS: It was highlighted by recent studies on the biological significance of vasculogenic mimicry (VM) in tumorigenicity and progression. However, it is unclear whether VM also plays a potential role in immune regulation and tumor microenvironment (TME) formation. METHODS: To identify patterns of VM alterations and VM-associated genetic features in non-small cell lung adenocarcinoma, we have screened 309 VM regulators and performed consensus molecular typing by the NMF algorithm. The ssGSEA and CIBORSORT algorithms were employed to measure the relative infiltration of distinct immune cell subpopulations. Individual tumors with immune responses were evaluated for alteration patterns of VM with typing-based differential genes. RESULTS: In 490 LUAD samples, two distinctive VM alteration patterns connected to different clinical outcomes and biochemical pathways were established. TME characterization showed that the observed VM patterns were primarily saturated with cell proliferation and metabolic pathways and higher in immune cell infiltration of the C1 type. Vasculogenic mimicry-related genes (VMRG) risk scores were constructed to divide patients with lung adenocarcinoma into subgroups with high and low scores. Patients with lower scores had better immunological scores and longer survival times. Upon further investigation, higher scores were positively correlated with higher tumor mutation burden (TMB), M1-type macrophages and immune checkpoint molecules. Nevertheless, in two other immunotherapy cohorts, individuals with lower scores had enhanced immune responses and long-lasting therapeutic benefits. Finally, we monitored the ANLN gene from the VMRG model, which was highly expressed in lung adenocarcinoma tissues and negatively correlated with prognosis; it was also highly expressed in lung adenocarcinoma cell lines, and knockdown of ANLN elicited low expression of VEGFA, MMP2 and MMP9. CONCLUSION: This study highlights that VM modifications are significantly associated with the diversity and complexity of TME, revealing new features of the immune microenvironment in lung adenocarcinoma and providing a new strategy for immunotherapy. Screening ANLN as a critical target for vasculogenic mimicry in lung adenocarcinoma provides a novel perspective for the targeted treatment of lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Prognosis , Immunotherapy , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Genetic Risk Score , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Tumor Microenvironment/genetics
15.
Inorg Chem ; 62(51): 21115-21127, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38063020

ABSTRACT

Based on the density functional theory (DFT) calculations, we explored the structures and HER catalytic properties of reconstructed and double-stacked black phosphorene (BP) edges. Ten bilayer BP edges were constructed by the double stacking of three typical monolayer edges, i.e., zigzag (ZZ) edge, armchair (AC) edge, skewed diagonal (SD) edge, and their reconstructed derivatives with their layer's configurations, edge deformations and thermodynamic stabilities were discussed. Based on these edges, five chemical sites on four bilayer BP edges were selected to be promising candidates for a HER catalyst, which present higher HER activities than that of Pt(111). Besides, among these four edges, two edges have even lower energetic barriers for the Tafel reaction. Compared with the monolayer edges, these selected bilayer BP edges confirm the remarkable enhancement of the HER catalytic properties, which can be attributed to their unique edge structures and the enhanced electronic densities after the hydrogen adsorptions. Finally, the thermostability of these edges at room temperature has also been proved by the DFT-MD simulations. This theoretic study deepens our fundamental understanding of the double-stacked edge structures of the BP and provides a new way for the rational design of highly efficient and noble-metal-free HER catalysts.

16.
Opt Express ; 31(24): 39454-39464, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041267

ABSTRACT

An approach to generating chaotic signals with low time-delay signatures (TDSs) from a semiconductor laser (SCL) is proposed and demonstrated based on optoelectronic hybrid feedback. Through using a chirped fiber Bragg grating (CFBG) to provide distributed feedback, a chaotic signal with a low TDS is generated from the SCL. With the assistance of the nonlinear optoelectronic feedback provided by a microwave photonic link, the relaxation oscillation effect in the SCL is effectively suppressed, and the periodicity of the oscillation is greatly weakened. Hence, the TDS of the generated chaotic signal from the SCL is further suppressed, and the effective bandwidth is enlarged. Both simulation and experiment are carried out to verify the feasibility of the proposed scheme to suppress the TDS. In the experiment, a chaotic signal with a large effective bandwidth of 12.93 GHz, an extremely high permutation entropy (PE) of 0.9983, and a low TDS of 0.04, is generated by using a CFBG with a dispersion coefficient of 22.33 ps/nm. This TDS value is at the same level as that obtained by using the SCL-based scheme relying solely on distributed feedback in a CFBG with a dispersion coefficient of 2000 ps/nm.

17.
Methods ; 220: 90-97, 2023 12.
Article in English | MEDLINE | ID: mdl-37952704

ABSTRACT

For a given single cell RNA-seq data, it is critical to pinpoint key cellular stages and quantify cells' differentiation potency along a differentiation pathway in a time course manner. Currently, several methods based on the entropy of gene functions or PPI network have been proposed to solve the problem. Nevertheless, these methods still suffer from the inaccurate interactions and noises originating from scRNA-seq profile. In this study, we proposed a cell potency inference method based on cell-specific network entropy, called SPIDE. SPIDE introduces the local weighted cell-specific network for each cell to maintain cell heterogeneity and calculates the entropy by incorporating gene expression with network structure. In this study, we compared three cell entropy estimation models on eight scRNA-Seq datasets. The results show that SPIDE obtains consistent conclusions with real cell differentiation potency on most datasets. Moreover, SPIDE accurately recovers the continuous changes of potency during cell differentiation and significantly correlates with the stemness of tumor cells in Colorectal cancer. To conclude, our study provides a universal and accurate framework for cell entropy estimation, which deepens our understanding of cell differentiation, the development of diseases and other related biological research.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Entropy , Cell Differentiation/genetics , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods
18.
Pharmacol Res ; 198: 107016, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38006980

ABSTRACT

The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.


Subject(s)
Inflammasomes , Membrane Proteins , Mice , Animals , Membrane Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Anions/metabolism , Mitochondria/metabolism
19.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37979582

ABSTRACT

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Subject(s)
Arabidopsis , Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
20.
Adv Sci (Weinh) ; 10(36): e2304905, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37897312

ABSTRACT

The asymmetrical growth of a single-wall carbon nanotube (SWCNT) by introducing a change of a local atomic structure, is usually inevitable and supposed to have a profound effect on the chirality control and property tailor. However, the breaking of the symmetry during SWCNT growth remains unexplored and its origins at the atomic-scale are elusive. Here, environmental transmission electron microscopy is used to capture the process of breaking the symmetry of a growing SWCNT from a sub-2-nm platinum catalyst nanoparticle in real-time, demonstrating that topological defects formed on the side of a SWCNT can serve as a buffer for stress release and inherently break its axis-symmetrical growth. Atomic-level details reveal the importance of the tube-catalyst interface and how the atom rearrangement of the solid-state platinum catalyst around the interface influences the final tubular structure. The active sites responsible for trapping carbon dimers and providing enough driving force for carbon incorporation and asymmetric growth are shown to be low-coordination step edges, as confirmed by theoretical simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...