Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 794
Filter
1.
Small ; : e2404402, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963075

ABSTRACT

Developing multifunctional, stimuli-responsive nanomedicine is intriguing because it has the potential to effectively treat cancer. Yet, poor tumor penetration of nanodrugs results in limited antitumor efficacy. Herein, an oxygen-driven silicon-based nanomotor (Si-motor) loaded with MnO and CaO2 nanoparticles is developed, which can move in tumor microenvironment (TME) by the cascade reaction of CaO2 and MnO. Under acidic TME, CaO2 reacts with acid to release Ca2+ to induce mitochondrial damage and simultaneously produces O2 and H2O2, when the loaded MnO exerts Fenton-like activity to produce ·OH and O2 based on the produced H2O2. The generated O2 drives Si-motor forward, thus endowing active delivery capability of the formed motors in TME. Meanwhile, MnO with glutathione (GSH) depletion ability further prevents reactive oxygen species (ROS) from being destroyed. Such TME actuated Si-motor with enhanced cellular uptake and deep penetration provides amplification of synergistic oxidative stresscaused by intracellular Ca2 + overloading, GSH depletion induced by Mn2+, and Mn2+ mediated chemodynamic treatment (CDT), leading to excellent tumor cell death. The created nanomotor may offer an effective platform for active synergistic cancer treatment.

2.
Article in English | MEDLINE | ID: mdl-38958272

ABSTRACT

OBJECTIVE: To determine whether virtual reality (VR)-based dynamic standing balance training improves three elements of sensory integration and investigate whether VR-based dynamic standing balance training results in improved outcomes, especially regarding balance and gait, compared to the standard training method. DESIGN: This single-blinded, randomized, controlled trial involved 30 patients with hemiplegia. The experimental (EG, n = 15) and control (CG, n = 15) groups received VR augmented-standing balance training or standard standing balance training, respectively, for 20 minutes, 5 days a week, for 3 weeks. The patients were assessed for primary (Sensory Organization Test [SOT] and the Berg balance scale [BBS]) and secondary (the functional reaching test and timed up-and-go test [TUG]) outcomes before and after training. RESULTS: From preintervention to postintervention, the BBS score (F = 26.295, p < 0.05), TUG score (F = 18.12, p < 0.05), mean score of conditions 2 (F = 4.36, p < 0.05) and 6 (F = 5.61, p < 0.05), and composite score of the SOT (F = 5.385, p < 0.05) in both groups were significantly improved. However, there was no significant difference between EG and CG (time*group p > 0.05). CONCLUSION: VR combined with standing balance training improved sensory integration, postural control, balance, and gait ability in patients with hemiplegia, reducing fall risk. However, outcomes were comparable to general balance training regarding balance and gait.

3.
Front Comput Neurosci ; 18: 1393122, 2024.
Article in English | MEDLINE | ID: mdl-38962654

ABSTRACT

Epilepsy is a common chronic brain disorder. Detecting epilepsy by observing electroencephalography (EEG) is the main method neurologists use, but this method is time-consuming. EEG signals are non-stationary, nonlinear, and often highly noisy, so it remains challenging to recognize epileptic EEG signals more accurately and automatically. This paper proposes a novel classification system of epileptic EEG signals for single-channel EEG based on the attention network that integrates time-frequency and nonlinear dynamic features. The proposed system has three novel modules. The first module constructs the Hilbert spectrum (HS) with high time-frequency resolution into a two-channel parallel convolutional network. The time-frequency features are fully extracted by complementing the high-dimensional features of the two branches. The second module constructs a grayscale recurrence plot (GRP) that contains more nonlinear dynamic features than traditional RP, fed into the residual-connected convolution module for effective learning of nonlinear dynamic features. The third module is the feature fusion module based on a self-attention mechanism to assign optimal weights to different types of features and further enhance the information extraction capability of the system. Therefore, the system is named HG-SANet. The results of several classification tasks on the Bonn EEG database and the Bern-Barcelona EEG database show that the HG-SANet can effectively capture the contribution degree of the extracted features from different domains, significantly enhance the expression ability of the model, and improve the accuracy of the recognition of epileptic EEG signals. The HG-SANet can improve the diagnosis and treatment efficiency of epilepsy and has broad application prospects in the fields of brain disease diagnosis.

4.
Micromachines (Basel) ; 15(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930713

ABSTRACT

Improving the spot brightness and uniformity of arrangement of the array laser is conducive to ensuring the beam quality of the fiber laser. Based on the light tracing principle, the optical model performance of two common fiber lasers was first analyzed. Then, a novel rotationally polarized optical model with high power and spot uniformity was designed and optimized on the basis of the aforementioned analysis. The results of the evaluation metrics of the multi-indicator optical model show that the spot uniformity of our proposed model improved by 24.03%, the power improved by 0.55%, and the maximum light distance was shortened from 120 mm to 82.58 mm. Further, the results of the coupling tolerance analysis of the optical elements show that the total coupling efficiency was 89.04%. The coupling power and tolerance relationships did not produce degradation compared with the traditional model. Extensive comparative results show that the designed rotationally polarized optical path model can effectively improve the optical coupling efficiency and spot uniformity of arrayed semiconductor lasers.

5.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940293

ABSTRACT

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/drug effects , Hematopoiesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Cilia/metabolism , Cilia/drug effects , Blastomeres/cytology , Blastomeres/metabolism , Blastomeres/drug effects , Cells, Cultured
6.
Sci China Life Sci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38900236

ABSTRACT

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.

7.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870290

ABSTRACT

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Subject(s)
ATP-Dependent Proteases , Artemisinins , Cholesterol Side-Chain Cleavage Enzyme , Mitochondrial Proteins , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Rats , Androgens/metabolism , Artemisinins/therapeutic use , Artemisinins/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Disease Models, Animal , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Ovary/drug effects , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Proteolysis , Mice, Inbred C57BL , Young Adult , Adult , Rats, Sprague-Dawley , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism
8.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838642

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Islets of Langerhans Transplantation , Mice, Inbred C57BL , Animals , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Male , Heart Transplantation , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Graft Survival/immunology
9.
Acta Pharmacol Sin ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902501

ABSTRACT

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

10.
Cell Biol Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894536

ABSTRACT

Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, characterized by poor prognosis and frequently diagnosed at advanced. While previous studies have demonstrated pleckstrin-2 (PLEK2) as aberrantly expressed and implicated in tumorigenesis across various tumor types, including LUAD, the molecular mechanisms underlying PLEK2-mediated LUAD progression remain incompletely understood. In this study, we obtained data from The Cancer Genome Atlas (TCGA) database to assess PLEK2 expression in LUAD, a finding further confirmed through analysis of human tissue specimens. PLEK2-silenced LUAD cellular models were subsequently constructed to examine the functional role of PLEK2 both in vitro and in vivo. Our results showed elevated PLEK2 expression in LUAD, correlating with poor patients' prognosis. PLEK2 knockdown led to a significant suppression of LUAD cell proliferation and migration, accompanied by enhanced apoptosis. Moreover, tumor growth in mice injected with PLEK2-silencing LUAD cells was impaired. Gene expression profiling and Co-IP assays suggested direct interaction between PLEK2 and SPC25, with downregulation of SPC25 similarly impairing cell proliferation and migration. Additionally, we revealed phosphoinositide 3-kinase (PI3K)/AKT signaling activation as requisite for PLEK2-induced malignant phenotypes in LUAD. Collectively, our findings underscore PLEK2's oncogenic potential in LUAD, suggesting its utility as a prognostic indicator and therapeutic target for LUAD management.

11.
Org Lett ; 26(24): 5087-5091, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38864522

ABSTRACT

Presented herein are two distinct regiodivergent [3+2] cyclization reactions between N-CF3 imidoyl chlorides and N-isocyaniminotriphenylphosphorane (NIITP) that include flexible modulation of the electronic properties of NIITP. The regioselectivity of reactions was different in the absence and presence of the Mo catalyst. The approach provides alternative efficient and scalable routes for N-CF3 triazole synthesis, demonstrating a broad substrate scope, excellent functional group tolerance, and practical advantages.

12.
Article in English | MEDLINE | ID: mdl-38834774

ABSTRACT

BACKGROUND: Adhesion G protein-coupled receptors (aGPCRs), a distinctive subset of the G protein-coupled receptor (GPCR) superfamily, play crucial roles in various physiological and pathological processes, with implications in tumor development. Despite the global prevalence of breast cancer (BRCA), specific aGPCRs as potential drug targets or biomarkers remain underexplored. METHODS: UALCAN, GEPIA, Kaplan-Meier Plotter, MethSurv, cBiopportal, String, GeneMANIA, DAVID, Timer, Metascape, and qPCR were applied in this work. RESULTS: Our analysis revealed significantly increased transcriptional levels of ADGRB2, ADGRC1, ADGRC2, ADGRC3, ADGRE1, ADGRF2, ADGRF4, and ADGRL1 in BRCA primary tumors. Further analysis indicated a significant correlation between the expressions of certain aGPCRs and the pathological stage of BRCA. High expression of ADGRA1, ADGRF2, ADGRF4, ADGRG1, ADGRG2, ADGRG4, ADGRG6, and ADGRG7 was significantly correlated with poor overall survival (OS) in BRCA patients. Additionally, high expression of ADGRF2 and ADGRF4 indicated inferior recurrence-free survival (RFS) in BRCA patients. The RT-qPCR experiments also confirmed that the mRNA levels of ADGRF2 and ADGRF4 were higher in BRCA cells and tissues. Functional analysis highlighted the diverse roles of aGPCRs, encompassing GPCR signaling and metabolic energy reserves. Moreover, aGPCRs may exert influence or actively participate in the development of BRCA through their impact on immune status. CONCLUSION: aGPCRs, particularly ADGRF2 and ADGRF4, hold promise as immunotherapeutic targets and prognostic biomarkers in BRCA.

13.
ACS Omega ; 9(21): 22719-22733, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826560

ABSTRACT

At present, research studies on the description of fracture characterization elements in fault solution reservoirs are relatively limited, and further research is needed on contour recognition and characterization methods. In this paper, first, the regional fault system is investigated and the faults are finely identified and characterized. Second, the volume of contour-sensitive attributes of the fault solver is optimized using tensor attributes, amplitude variation, discontinuity detection, and other attributes. Finally, a comprehensive evaluation of the fault solution reservoir is carried out by combining the dynamic production characteristics. Results show that (a) the interior details of fractured reservoirs can be mainly divided into two categories: cave-type reservoirs and fracture-pore-type reservoirs. (b) Fractured and porous reservoirs mainly utilize discontinuous properties and combine well data to calibrate and determine threshold values, ultimately achieving the characterization of interior details of fractured solution bodies. (c) After anisotropic diffusion filtering and fault enhancement, the seismic data was subjected to amplitude gradient disorder detection attribute calculation for multiscale fractures.

14.
Adv Drug Deliv Rev ; 210: 115344, 2024 07.
Article in English | MEDLINE | ID: mdl-38810702

ABSTRACT

Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.


Subject(s)
Brain , Organoids , Humans , Brain/metabolism , Brain/cytology , Animals , Models, Biological , Nervous System Diseases/pathology , Tissue Engineering/methods , Bioengineering/methods
15.
Nat Med ; 30(6): 1612-1621, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750351

ABSTRACT

Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors as maintenance therapy after first-line chemotherapy have improved progression-free survival in women with advanced ovarian cancer; however, not all PARP inhibitors can provide benefit for a biomarker-unselected population. Senaparib is a PARP inhibitor that demonstrated antitumor activity in patients with solid tumors, including ovarian cancer, in phase 1 studies. The multicenter, double-blind, phase 3 trial FLAMES randomized (2:1) 404 females with advanced ovarian cancer (International Federation of Gynecology and Obstetrics stage III-IV) and response to first-line platinum-based chemotherapy to senaparib 100 mg (n = 271) or placebo (n = 133) orally once daily for up to 2 years. The primary endpoint was progression-free survival assessed by blinded independent central review. At the prespecified interim analysis, the median progression-free survival was not reached with senaparib and was 13.6 months with placebo (hazard ratio 0.43, 95% confidence interval 0.32-0.58; P < 0.0001). The benefit with senaparib over placebo was consistent in the subgroups defined by BRCA1 and BRCA2 mutation or homologous recombination status. Grade ≥3 treatment-emergent adverse events occurred in 179 (66%) and 27 (20%) patients, respectively. Senaparib significantly improved progression-free survival versus placebo in patients with advanced ovarian cancer after response to first-line platinum-based chemotherapy, irrespective of BRCA1 and BRCA2 mutation status and with consistent benefits observed between homologous recombination subgroups, and was well tolerated. These results support senaparib as a maintenance treatment for patients with advanced ovarian cancer after a response to first-line chemotherapy. ClinicalTrials.gov identifier: NCT04169997 .


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Middle Aged , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Aged , Adult , Maintenance Chemotherapy , Double-Blind Method , Phthalazines/therapeutic use , Phthalazines/administration & dosage , Phthalazines/adverse effects , Progression-Free Survival , BRCA2 Protein/genetics , Aged, 80 and over , BRCA1 Protein/genetics , Piperazines , Quinazolines
16.
ACS Appl Mater Interfaces ; 16(20): 26808-26816, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728746

ABSTRACT

Glassy polymer dielectrics exhibit significant advantages in energy storage density and discharge efficiency; however, their potential application in thin-film capacitors is limited by the complexity of the production process, rising costs, and processing challenges arising from the brittleness of the material. In this study, a small amount of the polar monomer glycidyl methacrylate (GMA) was copolymerized with vinyl chloride (VC) using a highly integrated and precisely controlled process. This effectively facilitated the bulk synthesis of P(VC-GMA) copolymers, aimed at enhancing the dielectric properties and energy storage capabilities of the copolymer. Moreover, the incorporation of GMA into PVC induces significant alterations in the structural sequence of the copolymer, resulting in an enhancement of interchain interactions that ultimately contribute to an increase in the modulus and improved breakdown strength. With a GMA content of 2.4 mol %, P(VC-GMA) exhibits a significant enhancement in discharge energy density, surpassing that of a pure PVC copolymer, while maintaining high discharge efficiency and stability. The finding of this study paves the way for future advancements in high-energy-storage polymer dielectrics, thereby expanding the scope of advanced dielectric materials.

17.
Int J Surg ; 110(5): 2593-2603, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38748500

ABSTRACT

PURPOSE: The authors aimed to establish an artificial intelligence (AI)-based method for preoperative diagnosis of breast lesions from contrast enhanced mammography (CEM) and to explore its biological mechanism. MATERIALS AND METHODS: This retrospective study includes 1430 eligible patients who underwent CEM examination from June 2017 to July 2022 and were divided into a construction set (n=1101), an internal test set (n=196), and a pooled external test set (n=133). The AI model adopted RefineNet as a backbone network, and an attention sub-network, named convolutional block attention module (CBAM), was built upon the backbone for adaptive feature refinement. An XGBoost classifier was used to integrate the refined deep learning features with clinical characteristics to differentiate benign and malignant breast lesions. The authors further retrained the AI model to distinguish in situ and invasive carcinoma among breast cancer candidates. RNA-sequencing data from 12 patients were used to explore the underlying biological basis of the AI prediction. RESULTS: The AI model achieved an area under the curve of 0.932 in diagnosing benign and malignant breast lesions in the pooled external test set, better than the best-performing deep learning model, radiomics model, and radiologists. Moreover, the AI model has also achieved satisfactory results (an area under the curve from 0.788 to 0.824) for the diagnosis of in situ and invasive carcinoma in the test sets. Further, the biological basis exploration revealed that the high-risk group was associated with the pathways such as extracellular matrix organization. CONCLUSIONS: The AI model based on CEM and clinical characteristics had good predictive performance in the diagnosis of breast lesions.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Mammography , Humans , Female , Mammography/methods , Breast Neoplasms/diagnostic imaging , Retrospective Studies , Middle Aged , Adult , Contrast Media , Aged , Deep Learning , Breast/diagnostic imaging , Breast/pathology
18.
Chem Biol Interact ; 396: 111037, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719172

ABSTRACT

Breast cancer (BC) is the most common cancer in women and is known for its tendency to spread to the bones, causing significant health issues and mortality. In this study, we aimed to investigate whether cryoprotective isoliquiritigenin-zein phosphatidylcholine nanoparticles (ISL@ZLH NPs) could inhibit BC-induced bone destruction and tumor metastasis in both in vitro and animal models. To evaluate the potential of ISL@ZLH NPs, we conducted various experiments. First, we assessed cell viability, colony formation, transwell migration, and wound healing assays to determine the impact of ISL@ZLH NPs on BC cell behavior. Western blotting, TRAP staining and ALP activity were performed to examine the effects of ISL@ZLH NPs on osteoclast formation induced by MDA-MB-231 cell-conditioned medium and RANKL treated RAW 264.7 cells. Furthermore, we assessed the therapeutic impact of ISL@ZLH NPs on tumor-induced bone destruction using a mouse model of BC bone metastasis. Treatment with ISL@ZLH NPs effectively suppressed BC cell proliferation, colony formation, and motility, reducing their ability to metastasize. ISL@ZLH NPs significantly inhibited osteoclast formation and the expression of factors associated with bone destruction in BC cells. Additionally, ISL@ZLH NPs suppressed JAK-STAT signaling in RAW264.7 cells. In the BCBM mouse model, ISL@ZLH NPs led to a significant reduction in osteolytic bone lesions compared to the control group. Histological analysis and TRAP staining confirmed that ISL@ZLH NPs preserved the integrity of bone structure, preventing invasive metastasis by confining tumor growth to the bone marrow cavity. Furthermore, ISL@ZLH NPs effectively suppressed tumor-induced osteoclastogenesis, a key process in BC-related bone destruction. Our findings demonstrate that ISL@ZLH NPs have the potential to inhibit BC-induced bone destruction and tumor metastasis by targeting JAK-STAT signaling pathways and suppressing tumor-induced osteoclastogenesis. These results underscore the therapeutic promise of ISL@ZLH NPs in managing BC metastasis to the bones.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Chalcones , Janus Kinases , Nanoparticles , Phosphatidylcholines , STAT Transcription Factors , Signal Transduction , Zein , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Mice , Janus Kinases/metabolism , Nanoparticles/chemistry , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Signal Transduction/drug effects , Humans , STAT Transcription Factors/metabolism , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/therapeutic use , Zein/chemistry , Phosphatidylcholines/chemistry , Phosphatidylcholines/pharmacology , Cell Proliferation/drug effects , RAW 264.7 Cells , Cell Movement/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects
19.
Quant Imaging Med Surg ; 14(5): 3302-3311, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720836

ABSTRACT

Background: The parietal pleural adhesion/invasion of lung cancer can contribute substantially to poor prognosis and difficulty in surgery. The value of ultrasound in evaluating the parietal pleural adhesion or invasion (pleural adhesion/invasion) of lung cancer remains uncertain. This study investigated the value of B-mode ultrasound and contrast-enhanced ultrasound (CEUS) in diagnosing parietal pleural adhesion/invasion of subpleural lung cancer. Methods: The study animals included 40 male New Zealand white rabbits. A rabbit subpleural lung cancer model was constructed by injecting VX2 tumor tissue under ultrasound guidance. In the 1-3 weeks after subpleural lesion formation, parietal pleural adhesion/invasion of the largest subpleural lesion was evaluated with B-mode ultrasound and CEUS by two sonographers. The parietal pleural adhesion/invasion was also determined using the gold standard method of findings from anatomical and pathological examination. Results: Ultimately, 34 rabbits were subjected to complete ultrasonic evaluation. There were 20 and 14 cases with and without parietal pleural adhesion/invasion, respectively, as confirmed by anatomical and pathological evaluations. The diagnostic sensitivity, specificity, and accuracy of sonographer 1 using B-mode ultrasound were 50.0% [95% confidence interval (CI): 26.0-74.0%], 100%, and 70.6% (95% CI: 54.5-86.7%), respectively; for CEUS, they were 90.0% (95% CI: 75.6-100.0%), 100.0%, and 94.1% (95% CI: 85.8-100.0%), respectively. The diagnostic sensitivity, specificity, and accuracy of sonographer 2 using B-mode ultrasound were 45.0% (95% CI: 21.1-68.9%), 92.9% (95% CI: 77.5-100.0%), and 64.7% (95% CI: 47.8-81.6%), respectively; for CEUS, they were 85.0% (95% CI: 67.9-100.0%), 100.0%, and 91.2% (95% CI: 81.1-100.0%), respectively. The diagnostic accuracy of sonographer 1 was higher with CEUS than with B-mode ultrasound, but not significantly so (94.1% vs. 70.6%; P=0.08). The diagnostic accuracy of sonographer 2 was significantly higher with CEUS than with B-mode ultrasound (91.2% vs. 64.7%; P=0.03). The interrater reliability was higher for CEUS than for B-mode ultrasound (κ=0.941 vs. κ =0.717). Conclusions: Based on an animal model, B-mode ultrasound and CEUS both exhibited good diagnostic efficacy and interrater reliability in evaluating parietal pleural adhesion/invasion of subpleural lung cancer although CEUS outperformed B-mode ultrasound for both measures.

20.
Sci Rep ; 14(1): 11974, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796639

ABSTRACT

This study aimed to explore the link between various forms of obesity, including body mass index (BMI) and waist circumference (WC), and the risk of dyslipidemia among Chinese residents. We selected the study population through a multi-stage random sampling method from permanent residents aged 35 and older in Ganzhou. Obesity was categorized as non-obesity, general obesity, central obesity, or compound obesity according to established diagnostic criteria. We employed a logistic regression model to assess the relationship between different types of obesity and the risk of dyslipidemia. Additionally, we used the restricted cubic spline model to analyze the association between BMI, WC, and the risk of dyslipidemia. The study included 2030 residents aged 35 or older from Ganzhou, China. The prevalence of dyslipidemia was found to be 39.31%, with an age-standardized prevalence of 36.51%. The highest prevalence of dyslipidemia, 58.79%, was observed among those with compound obesity. After adjusting for confounding factors, we found that the risk of dyslipidemia in those with central and compound obesity was respectively 2.00 (95% CI 1.62-2.46) and 2.86 (95% CI 2.03-4.03) times higher than in the non-obese population. Moreover, the analysis using the restricted cubic spline model indicated a nearly linear association between BMI, WC, and the risk of dyslipidemia. The findings emphasize the significant prevalence of both dyslipidemia and obesity among adults aged 35 and above in Ganzhou, China. Notably, individuals with compound obesity are at a substantially increased risk of dyslipidemia. Therefore, it is crucial to prioritize the use of BMI and WC as screening and preventive measures for related health conditions.


Subject(s)
Body Mass Index , Dyslipidemias , Obesity , Waist Circumference , Humans , Middle Aged , Dyslipidemias/epidemiology , Male , Female , Obesity/epidemiology , Obesity/complications , Prevalence , Aged , China/epidemiology , Adult , Risk Factors , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...