Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.528
Filter
1.
Front Microbiol ; 15: 1395340, 2024.
Article in English | MEDLINE | ID: mdl-38855765

ABSTRACT

Background: Several studies have suggested a potential link between allergic rhinitis (AR) and gut microbiota. In response, we conducted a meta-analysis of Linkage Disequilibrium Score Regression (LDSC) and Mendelian randomization (MR) to detect their genetic associations. Methods: Summary statistics for 211 gut microbiota taxa were gathered from the MiBioGen study, while data for AR were sourced from the Pan-UKB, the FinnGen, and the Genetic Epidemiology Research on Aging (GERA). The genetic correlation between gut microbiota and AR was assessed using LDSC. The principal estimate of causality was determined using the Inverse-Variance Weighted (IVW) method. To assess the robustness of these findings, sensitivity analyses were conducted employing methods such as the weighted median, MR-Egger, and MR-PRESSO. The summary effect estimates of LDSC, forward MR and reverse MR were combined using meta-analysis for AR from different data resources. Results: Our study indicated a significant genetic correlation between genus Sellimonas (Rg = -0.64, p = 3.64 × 10-5, Adjust_P = 3.64 × 10-5) and AR, and a suggestive genetic correlation between seven bacterial taxa and AR. Moreover, the forward MR analysis identified genus Gordonibacter, genus Coprococcus2, genus LachnospiraceaeUCG010, genus Methanobrevibacter, and family Victivallaceae as being suggestively associated with an increased risk of AR. The reverse MR analysis indicated that AR was suggestively linked to an increased risk for genus Coprococcus2 and genus RuminococcaceaeUCG011. Conclusion: Our findings indicate a causal relationship between specific gut microbiomes and AR. This enhances our understanding of the gut microbiota's contribution to the pathophysiology of AR and lays the groundwork for innovative approaches and theoretical models for future prevention and treatment strategies in this patient population.

2.
Elife ; 122024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829202

ABSTRACT

Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles. To further reveal the functions of Styxl2 in adult muscles, we generated two inducible knockout mouse models: one with Styxl2 being deleted in mature myofibers to assess its role in sarcomere maintenance, and the other in adult muscle satellite cells (MuSCs) to assess its role in de novo sarcomere assembly. We find that Styxl2 is not required for sarcomere maintenance but functions in de novo sarcomere assembly during injury-induced muscle regeneration. Mechanistically, Styxl2 interacts with non-muscle myosin IIs, enhances their ubiquitination, and targets them for autophagy-dependent degradation. Without Styxl2, the degradation of non-muscle myosin IIs is delayed, which leads to defective sarcomere assembly and force generation. Thus, Styxl2 promotes de novo sarcomere assembly by interacting with non-muscle myosin IIs and facilitating their autophagic degradation.


Subject(s)
Mice, Knockout , Sarcomeres , Zebrafish , Animals , Mice , Proteolysis , Sarcomeres/metabolism , Zebrafish/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
3.
Article in English | MEDLINE | ID: mdl-38830044

ABSTRACT

OBJECTIVES: This study aimed to investigate the value of a deep learning (DL) model based on greyscale ultrasound (US) images for precise assessment and accurate diagnosis of primary Sjögren's syndrome (pSS). METHODS: This was a multicentre prospective analysis. All pSS patients were diagnosed according to 2016 ACR/EULAR criteria. 72 pSS patients and 72 sex- and age-matched healthy controls recruited between January 2022 and April 2023, together with 41 patients and 41 healthy controls recruited from June 2023 to February 2024 were used for DL model development and validation, respectively. DL model was constructed based on the ResNet 50, input with preprocessed all participants' bilateral submandibular glands (SMGs), parotid glands (PGs), and lacrimal glands (LGs) greyscale US images. Diagnostic performance of the model was compared with two radiologists. The accuracy of prediction and identification performance of DL model were evaluated by calibration curve. RESULTS: 864 and 164 greyscale US images of SMGs, PGs, and LGs were collected for development and validation of the model. The AUCs of DL model in the SMG, PG, and LG were 0.92, 0.93, 0.91 in the model cohort, and were 0.90, 0.88, 0.87 in the validation cohort respectively, outperforming both radiologists. Calibration curves showed the prediction probability of DL model were consistent with the actual probability in both model cohort and validation cohort. CONCLUSION: DL model based on greyscale US images showed diagnostic potential in the precise assessment of pSS patients in the SMG, PG, and LG, outperforming conventional radiologist evaluation.

4.
China CDC Wkly ; 6(20): 450-456, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38846360

ABSTRACT

Introduction: This study examines the seasonal and genetic characteristics of human metapneumovirus (HMPV) in Henan from 2017 to 2023. Methods: Samples from patients with acute respiratory infection (ARI) testing positive for HMPV were subjected to real-time reverse transcription polymerase chain reaction The G gene was amplified and sequenced from these samples for epidemiological and phylogenetic analysis. Results: We enrolled 2,707 ARI patients from October 2017 to March 2023, finding an HMPV positivity rate of 6.17% (167/2,707). Children under five exhibited the highest infection rate at 7.78% (138/1,774). The 2018 and 2019 HMPV outbreaks predominantly occurred in spring (March to May), with peak positivity rates of 31.11% in May 2018 and 19.57% in May 2019. A notable increase occurred in November 2020, when positivity reached a historic high of 42.11%, continuing until January 2021. From February 2021 through March 2023, no significant seasonal peaks were observed, with rates ranging from 0% to 8.70%. Out of 81 G gene sequences analyzed, 46.91% (38/81) were identified as subtype A (A2c: 45.67%, 37/81; A2b: 1.23%, 1/81) and 53.09% (43/81) as subtype B (B1: 9.88%, 8/81; B2: 43.21%, 35/81). Notably, an AAABBA switch pattern was observed in HMPV subtypes. The dominant strains were A2c111nt-dup in subtype A and B2 in subtype B. Conclusions: Six years of surveillance in Henan Province has detailed the seasonal and genetic dynamics of HMPV, contributing valuable insights for the control and prevention of HMPV infections in China. These findings support the development of targeted HMPV vaccines and immunization strategies.

5.
Phytomedicine ; 131: 155771, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38851101

ABSTRACT

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.

6.
Polymers (Basel) ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891547

ABSTRACT

High-temperature vapour-phase acetylation (HTVPA) is a simultaneous acetylation and heat treatment process for wood modification. This study was the first investigation into the impact of HTVPA treatment on the resistance of wood to biological degradation. In the termite resistance test, untreated wood exhibited a mass loss (MLt) of 20.3%, while HTVPA-modified wood showed a reduced MLt of 6.6-3.2%, which decreased with an increase in weight percent gain (WPG), and the termite mortality reached 95-100%. Furthermore, after a 12-week decay resistance test against brown-rot fungi (Laetiporus sulfureus and Fomitopsis pinicola), untreated wood exhibited mass loss (MLd) values of 39.6% and 54.5%, respectively, while HTVPA-modified wood exhibited MLd values of 0.2-0.9% and -0.2-0.3%, respectively, with no significant influence from WPG. Similar results were observed in decay resistance tests against white-rot fungi (Lenzites betulina and Trametes versicolor). The results of this study demonstrated that HTVPA treatment not only effectively enhanced the decay resistance of wood but also offered superior enhancement relative to separate heat treatment or acetylation processes. In addition, all the HTVPA-modified wood specimens prepared in this study met the requirements of the CNS 6717 wood preservative standard, with an MLd of less than 3% for decay-resistant materials.

7.
Huan Jing Ke Xue ; 45(6): 3196-3204, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897743

ABSTRACT

The Guohe River Basin in Anhui Province was selected as the research area for this study. By collecting surface water, shallow groundwater, and middle-deep groundwater samples, various hydrochemical parameters and stable isotopes of water in different water bodies were analyzed using methods such as the Gibbs diagram, ion ratios, and MixSIAR model to reveal and quantify the transformation relationships between these water bodies. The results indicated that both surface water and groundwater in the study area were predominantly neutral to weakly alkaline. The hydrochemical types of surface water were mainly characterized by Cl·SO4·HCO3-Na and Cl·SO4-Na types, whereas the shallow groundwater exhibited HCO3-Ca·Mg and HCO3-Mg·Na types, and the middle-deep groundwater was of the Cl·HCO3-Na type. The hydrochemical characteristics of various water bodies were influenced by multiple factors such as rock weathering, evaporation concentration, and positive cation exchange. The distribution characteristics of δ18O and δ2H values in surface water and groundwater indicated that atmospheric precipitation was the main water source. The δ18O and δ2H in groundwater were significantly correlated with K+, Na+, Cl-, SO42-, and NO3-. According to the analysis using the MixSIAR model, the contribution of atmospheric precipitation to surface water was 46.5 %, whereas the contribution from shallow groundwater was 53.5 %. The sources of shallow groundwater were identified as atmospheric precipitation (57.4 %) and surface water (42.6 %), and the main source of supply for middle-deep groundwater was lateral flow from upstream groundwater.

8.
Autophagy ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873931

ABSTRACT

Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H+-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V1 domain and the membrane-embedded Vo domain. The V-ATPase a subunit, an integral part of the Vo domain, has four isoforms in mammals. The functions of different isoforms on phagosome maturation in different cells/species remain controversial. Here we show that mutations of both the V-ATPase Atp6v0a1 and Tcirg1b/Atp6v0a3 subunits lead to the accumulation of phagosomes in zebrafish microglia. However, their mechanisms are different. The V-ATPase Atp6v0a1 subunit is mainly distributed in early and late phagosomes. Defects of this subunit lead to a defective transition from early phagosomes to late phagosomes. In contrast, The V-ATPase Tcirg1b/Atp6v0a3 subunit is primarily located on lysosomes and regulates late phagosome-lysosomal fusion. Defective Tcirg1b/Atp6v0a3, but not Atp6v0a1 subunit leads to reduced acidification and impaired macroautophagy/autophagy in microglia. We further showed that ATP6V0A1/a1 and TCIRG1/a3 subunits in mouse macrophages preferentially located in endosomes and lysosomes, respectively. Blocking these subunits disrupted early-to-late endosome transition and endosome-to-lysosome fusion, respectively. Taken together, our results highlight the essential and conserved roles played by different V-ATPase subunits in multiple steps of phagocytosis and endocytosis across various species.

9.
BMC Cancer ; 24(1): 730, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877437

ABSTRACT

BACKGROUND: Oral cavity squamous cell carcinoma (OCSCC) is the most common pathological type in oral tumors. This study intends to construct a novel prognostic nomogram model based on China populations for these resectable OCSCC patients, and then validate these nomograms. METHODS: A total of 607 postoperative patients with OCSCC diagnosed between June 2012 and June 2018 were obtained from two tertiary medical institutions in Xinxiang and Zhengzhou. Then, 70% of all the cases were randomly assigned to the training group and the rest to the validation group. The endpoint time was defined as overall survival (OS) and disease-free survival (DFS). The nomograms for predicting the 3-, and 5-year OS and DFS in postoperative OCSCC patients were established based on the independent prognostic factors, which were identified by the univariate analysis and multivariate analysis. A series of indexes were utilized to assess the performance and net benefit of these two newly constructed nomograms. Finally, the discrimination capability of OS and DFS was compared between the new risk stratification and the American Joint Committee on Cancer (AJCC) stage by Kaplan-Meier curves. RESULTS: 607 postoperative patients with OCSCC were selected and randomly assigned to the training cohort (n = 425) and validation cohort (n = 182). The nomograms for predicting OS and DFS in postoperative OCSCC patients had been established based on the independent prognostic factors. Moreover, dynamic nomograms were also established for more convenient clinical application. The C-index for predicting OS and DFS were 0.691, 0.674 in the training group, and 0.722, 0.680 in the validation group, respectively. Besides, the calibration curve displayed good consistency between the predicted survival probability and actual observations. Finally, the excellent performance of these two nomograms was verified by the NRI, IDI, and DCA curves in comparison to the AJCC stage system. CONCLUSION: The newly established and validated nomograms for predicting OS and DFS in postoperative patients with OCSCC perform well, which can be helpful for clinicians and contribute to clinical decision-making.


Subject(s)
Mouth Neoplasms , Nomograms , Humans , Male , Female , Middle Aged , China/epidemiology , Mouth Neoplasms/surgery , Mouth Neoplasms/mortality , Mouth Neoplasms/pathology , Prognosis , Aged , Postoperative Period , Adult , Disease-Free Survival , Kaplan-Meier Estimate , Squamous Cell Carcinoma of Head and Neck/surgery , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Neoplasm Staging
10.
Clin Oral Investig ; 28(7): 375, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878120

ABSTRACT

OBJECTIVE: To investigate the impact of mineralized dentin matrix (MDM) on the prognosis on bone regeneration and migration of retained roots after coronectomy. MATERIALS AND METHODS: Patients were divided into three groups based on the type of bone graft after coronectomy: Group C (n = 20, collagen), Group T (n = 20, tricalcium phosphate (TCP) + collagen), and Group D (n = 20, MDM + collagen). CBCT scans, conducted immediately and 6 months after surgery, were analyzed using digital software. Primary outcomes, including changes in bone defect depth and retained root migration distance, were evaluated 6 months after surgery. RESULTS: After 6 months, both Groups D and T exhibited greater reduction of the bone defect and lesser retained root migration than Group C (p < 0.001). Group D had greater regenerated bone volume in the distal 2 mm (73 mm3 vs. 57 mm3, p = 0.011) and lesser root migration (2.18 mm vs. 2.96 mm, p < 0.001) than Group T. The proportion of completely bone embedded retained roots was also greater in Group D than in Group C (70.0% vs. 42.1%, p = 0.003). CONCLUSIONS: MDM is an appropriate graft material for improving bone defect healing and reducing retained root migration after coronectomy. CLINICAL RELEVANCE: MDM is an autogenous material prepared chairside, which can significantly improve bone healing and reduce the risk of retained root re-eruption. MDM holds promise as a routine bone substitute material after M3M coronectomy.


Subject(s)
Bone Regeneration , Calcium Phosphates , Collagen , Cone-Beam Computed Tomography , Dentin , Humans , Male , Female , Calcium Phosphates/therapeutic use , Prognosis , Middle Aged , Collagen/therapeutic use , Bone Regeneration/drug effects , Tooth Root/diagnostic imaging , Tooth Root/surgery , Adult , Tooth Crown/surgery , Treatment Outcome , Bone Transplantation/methods , Bone Substitutes/therapeutic use
11.
Int J Biol Macromol ; 273(Pt 2): 132811, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825282

ABSTRACT

Atmospheric drying method for fabricating aerogels is considered the most promising way for casting aerogels on a large scale. However, the organic solvent exchange, remaining environmental pollution risk, is a crucial step in mitigating the impact of surface tension during the atmospheric drying process, especially for wet gel formed through the alkoxy-derived sol-gel process, such as melamine-formaldehyde resin (MF) aerogel. Herein, a tough polymer-assisted in situ polymerization was proposed to fabricate MF resin aerogel with a combination of mechanical toughness and strength, enabling it to withstand the capillary force during water evaporation. The monolithic MF resin aerogel through the sol-gel method can be directly prepared without additional network strengthening or organic solvent exchange. The resulting MF resin aerogel exhibits a homogeneous as well as hierarchical structure with macropores and mesopores (~6 µm and ~5 nm), high compressive modulus of 31.8 MPa, self-extinguishing property, and high-temperature thermal insulation with 97 % heat decrease for butane flame combustion. This work presents a straightforward and environmentally friendly method for fabricating MF resin aerogels with nanostructures and excellent performance in open conditions, exhibiting various applications.

12.
J Microbiol Biotechnol ; 34(6): 1322-1327, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38881169

ABSTRACT

The accurate and rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) holds significant clinical importance. This work presents a new method for detecting methicillin-resistant Staphylococcus aureus (S. aureus) in clinical samples. The method uses an aptamer-based colorimetric assay that combines a recognizing probe to identify the target and split DNAzyme to amplify the signal, resulting in a highly sensitive and direct analysis of methicillin-resistance. The identification of the PBP2a protein on the membrane of S. aureus in clinical samples leads to the allosterism of the recognizing probe, and thus provides a template for the proximity ligation of split DNAzyme. The proximity ligation of split DNAzyme forms an intact DNAzyme to identify the loop section in the L probe and generates a nicking site to release the loop sequence ("3" and "4" fragments). The "3" and "4" fragments forms an intact sequence to induce the catalytic hairpin assembly, exposing the G-rich section. The released the G-rich sequence of LR probe induces the formation of G-quadruplex-hemin DNAzyme as a colorimetric signal readout. The absorption intensity demonstrated a strong linear association with the logarithm of the S. aureus concentration across a wide range of 5 orders of magnitude dynamic range under the optimized experimental parameters. The limit of detection was calculated to be 23 CFU/ml and the method showed high selectivity for MRSA.

13.
Mol Ther ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

14.
J Ovarian Res ; 17(1): 126, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890751

ABSTRACT

Ovarian cancer is a common malignant tumor in women, with a high mortality rate ranking first among gynecological tumors. Currently, there is insufficient understanding of the causes, pathogenesis, recurrence and metastasis of ovarian cancer, and early diagnosis and treatment still face great challenges. The sensitivity and specificity of existing ovarian cancer screening methods are still unsatisfactory. Centromere protein O (CENP-O) is a recently discovered structural centromere protein that is involved in cell death and is essential for spindle assembly, chromosome separation, and checkpoint signaling during mitosis. The abnormal high expression of CENP-O was detected in various tumors such as bladder cancer and gastric cancer, and it participates in the regulation of tumor cell proliferation. In this study, we detect the expression abundance of CENP-O mRNA in different ovarian cancer cells ( ES-2, A2780, Caov-3, OVCAR-3 and SK-OV-3). The biological function changes of cell proliferation and apoptosis were detected and the role of CENP-O in ovarian cancer cell proliferation and apoptosis was explored by knocking down the expression of CENP-O gene. The results showed that CENP-O gene was significantly expressed in 5 types of ovarian cancer cell lines. After knocking down the CENP-O gene, the proliferation and cloning ability of ovarian cancer cells decreased, and the apoptosis increased. This study indicates that CENP-O has the potential to be a molecular therapeutic target, and downregulating the expression of CENP-O gene can break the unlimited proliferation ability of cancer cells and promote their apoptosis, providing a foundation and new ideas for subsequent molecular mechanism research and targeted therapy.


Subject(s)
Apoptosis , Cell Proliferation , Chromosomal Proteins, Non-Histone , Ovarian Neoplasms , Humans , Female , Cell Proliferation/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Apoptosis/genetics , Gene Expression Regulation, Neoplastic
15.
Urolithiasis ; 52(1): 96, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896174

ABSTRACT

In order to provide decision-making support for the auxiliary diagnosis and individualized treatment of calculous pyonephrosis, the study aims to analyze the clinical features of the condition, investigate its risk factors, and develop a prediction model of the condition using machine learning techniques. A retrospective analysis was conducted on the clinical data of 268 patients with calculous renal pelvic effusion who underwent ultrasonography-guided percutaneous renal puncture and drainage in our hospital during January 2018 to December 2022. The patients were included into two groups, one for pyonephrosis and the other for hydronephrosis. At a random ratio of 7:3, the research cohort was split into training and testing data sets. Single factor analysis was utilized to examine the 43 characteristics of the hydronephrosis group and the pyonephrosis group using the T test, Spearman rank correlation test and chi-square test. Disparities in the characteristic distributions between the two groups in the training and test sets were noted. The features were filtered using the minimal absolute value shrinkage and selection operator on the training set of data. Auxiliary diagnostic prediction models were established using the following five machine learning (ML) algorithms: random forest (RF), xtreme gradient boosting (XGBoost), support vector machines (SVM), gradient boosting decision trees (GBDT) and logistic regression (LR). The area under the curve (AUC) was used to compare the performance, and the best model was chosen. The decision curve was used to evaluate the clinical practicability of the models. The models with the greatest AUC in the training dataset were RF (1.000), followed by XGBoost (0.999), GBDT (0.977), and SVM (0.971). The lowest AUC was obtained by LR (0.938). With the greatest AUC in the test dataset going to GBDT (0.967), followed by LR (0.957), XGBoost (0.950), SVM (0.939) and RF (0.924). LR, GBDT and RF models had the highest accuracy were 0.873, followed by SVM, and the lowest was XGBoost. Out of the five models, the LR model had the best sensitivity and specificity is 0.923 and 0.887. The GBDT model had the highest AUC among the five models of calculous pyonephrosis developed using the ML, followed by the LR model. The LR model was considered be the best prediction model when combined with clinical operability. As it comes to diagnosing pyonephrosis, the LR model was more credible and had better prediction accuracy than common analysis approaches. Its nomogram can be used as an additional non-invasive diagnostic technique.


Subject(s)
Machine Learning , Pyonephrosis , Humans , Pyonephrosis/etiology , Pyonephrosis/diagnosis , Retrospective Studies , Female , Male , Middle Aged , Adult , Hydronephrosis/diagnostic imaging , Hydronephrosis/etiology , Aged , Kidney Calculi/complications , Kidney Calculi/diagnostic imaging
16.
Comput Biol Med ; 176: 108588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761503

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD: Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS: Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS: This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lipidomics , Proteomics , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Cognitive Dysfunction/blood , Cognitive Dysfunction/metabolism , Humans , Proteomics/methods , Male , Aged , Female , Lipidomics/methods , Biomarkers/blood , Biomarkers/metabolism , Animals , Disease Progression , Machine Learning , Aged, 80 and over
17.
Adv Drug Deliv Rev ; 210: 115332, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759702

ABSTRACT

Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.


Subject(s)
Antineoplastic Agents , Gastrointestinal Microbiome , Neoplasms , Prebiotics , Probiotics , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Probiotics/administration & dosage , Prebiotics/administration & dosage , Antineoplastic Agents/administration & dosage , Animals , Immunotherapy/methods
18.
J Nat Prod ; 87(5): 1479-1486, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38728656

ABSTRACT

Bioinspired skeleton transformation of a tricyclic lathyrane-type Euphorbia diterpene was conducted to efficiently construct a tetracyclic tigliane diterpene on a gram scale via a key aldol condensation. The tigliane diterpene was then respectively converted into naturally rare ingenane and rhamnofolane diterpenes through a semipinacol rearrangement and a visible-light-promoted regioselective cyclopropane ring-opening reaction. This work provides a concise strategy for high-efficiency access to diverse polycyclic Euphorbia diterpene skeletons from abundant lathyrane-type natural products and paves the way for biological activity investigation of naturally rare molecules.


Subject(s)
Diterpenes , Euphorbia , Diterpenes/chemistry , Diterpenes/isolation & purification , Euphorbia/chemistry , Molecular Structure , Biomimetics , Biological Products/chemistry
19.
BMC Cancer ; 24(1): 611, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773399

ABSTRACT

RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , MicroRNAs , Pyruvic Acid , RNA, Long Noncoding , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Pyruvic Acid/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
20.
Arch Med Sci ; 20(2): 384-401, 2024.
Article in English | MEDLINE | ID: mdl-38757030

ABSTRACT

Introduction: Our goal was to systematically review the current evidence comparing the relative effectiveness of two maxillary sinus floor elevation (MSFE) approaches (internal and external) without bone grafts with that of conventional/grafted MSFE in patients undergoing implantation in the posterior maxilla. Material and methods: Medical databases (PubMed/Medline, Embase, Web of Science, and Cochrane Library) were searched for randomised controlled trials published between January 1980 and May 2023. A manual search of implant-related journals was also performed. Studies published in English that reported the clinical outcomes of MSFE with or without bone material were included. The risk of bias was assessed using the Cochrane Handbook Risk Assessment Tool. Meta-analyses and trial sequence analyses were performed on the included trials. Meta-regression analysis was performed using pre-selected covariates to account for substantial heterogeneity. The certainty of evidence for clinical outcomes was assessed using GRADEpro GDT online (Guideline Development Tool). Results: Seventeen studies, including 547 sinuses and 696 implants, were pooled for the meta-analysis. The meta-analysis showed no statistically significant difference between MSFE without bone grafts and conventional MSFE in terms of the implant survival rate in the short term (n = 11, I2 = 0%, risk difference (RD): 0.03, 95% confidence intervals (CI): -0.01-0.07, p = 0.17, required information size (RIS) = 307). Although conventional MSFE had a higher endo-sinus bone gain (n = 13, I2 = 89%, weighted mean difference (WMD): -1.24, 95% CI: -1.91- -0.57, p = 0.0003, RIS = 461), this was not a determining factor in implant survival. No difference in perforation (n = 13, I2 = 0%, RD = 0.03, 95% CI: -0.02-0.09, p = 0.99, RIS = 223) and marginal bone loss (n = 4, I2 = 0%, WMD = 0.05, 95% CI: -0.14-0.23, p = 0.62, no RIS) was detected between the two groups using meta-analysis. The pooled results of the implant stability quotient between the two groups were not robust on sensitivity analysis. Because of the limited studies reporting on the visual analogue scale, surgical time, treatment costs, and bone density, qualitative analysis was conducted for these outcomes. Conclusions: This systematic review revealed that both non-graft and grafted MSFE had high implant survival rates. Owing to the moderate strength of the evidence and short-term follow-up, the results should be interpreted with caution.

SELECTION OF CITATIONS
SEARCH DETAIL
...