Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.766
Filter
1.
Food Funct ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989659

ABSTRACT

Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.

2.
Nat Commun ; 15(1): 5587, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961076

ABSTRACT

Hybrid mapping is a powerful approach to efficiently identify and characterize genes regulated through mechanisms in cis. In this study, using reciprocal crosses of the phenotypically divergent Duroc and Lulai pig breeds, we perform a comprehensive multi-omic characterization of regulatory variation across the brain, liver, muscle, and placenta through four developmental stages. We produce one of the largest multi-omic datasets in pigs to date, including 16 whole genome sequenced individuals, as well as 48 whole genome bisulfite sequencing, 168 ATAC-Seq and 168 RNA-Seq samples. We develop a read count-based method to reliably assess allele-specific methylation, chromatin accessibility, and RNA expression. We show that tissue specificity was much stronger than developmental stage specificity in all of DNA methylation, chromatin accessibility, and gene expression. We identify 573 genes showing allele specific expression, including those influenced by parent-of-origin as well as allele genotype effects. We integrate methylation, chromatin accessibility, and gene expression data to show that allele specific expression can be explained in great part by allele specific methylation and/or chromatin accessibility. This study provides a comprehensive characterization of regulatory variation across multiple tissues and developmental stages in pigs.


Subject(s)
Alleles , DNA Methylation , Animals , Swine/genetics , Female , Chromatin/genetics , Chromatin/metabolism , Organ Specificity/genetics , Liver/metabolism , Placenta/metabolism , Male , Brain/metabolism , Sus scrofa/genetics , Whole Genome Sequencing , Pregnancy , Multiomics
4.
Environ Res ; 260: 119508, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945511

ABSTRACT

Cyanobacterial blooms (CBs) and concomitant water quality issues in oligotrophic/mesotrophic waters have been recently reported, challenging the conventional understanding that CBs are primarily caused by eutrophication. To elucidate the underlying mechanism of CBs in nutrition-deficient waters, the changes in Chlorophyll a (Chl-a), cyanobacterial-bacterial community composition, and certain microbial function in Qingcaosha Reservoir, the global largest tidal estuary storage reservoir, were analyzed systematically and comprehensively after its pilot run (2011-2019) in this study. Although the water quality was improved and stabilized, more frequent occurrences of bloom level of Chl-a (>20 µg L-1) in warm seasons were observed during recent years. The meteorological changes (CO2, sunshine duration, radiation, precipitation, evaporation, and relative humidity), water quality variations (pH, total organic carbon content, dissolved oxygen, and turbidity), accumulated sediments as an endogenous source, as well as unique estuarine conditions collectively facilitated picocyanobacterial-bacterial coexistence and community functional changes in this reservoir. A stable and tight co-occurrence pattern was established between dominant cyanobacteria (Synechococcus, Cyanobium, Planktothrix, Chroococcidiopsis, and Prochlorothrix) and certain heterotrophic bacteria (Proteobacteria, Actinobacteria, and Bacteroidetes), which contributed to the remineralization of organic matter for cyanobacteria utilization. The relative abundance of chemoorganoheterotrophs and bacteria related to nitrogen transformation (Paracoccus, Rhodoplanes, Nitrosomonas, and Zoogloea) increased, promoting the emergence of CBs in nutrient-limited conditions through enhanced nutrient recycling. In environments with limited nutrients, the interaction between photosynthetic autotrophic microorganisms and heterotrophic bacteria appears to be non-competitive. Instead, they adopt complementary roles within their ecological niche over long-term succession, mutually benefiting from this association. This long-term study confirmed that enhanced nutrient cycling, facilitated by cyanobacterial-bacterial symbiosis following long-term succession, could promote CBs in oligotrophic aquatic environments devoid of external nutrient inputs. This study advances understanding of the mechanisms that trigger and sustain CBs under nutritional constraints, contributing to developing more effective mitigation strategies, ensuring water safety, and maintaining ecological balance.

5.
J Environ Manage ; 364: 121448, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870797

ABSTRACT

Submerged zone in bioretention facilities for stormwater treatment has been approved to be an effective structure amendment to improve denitrification capability. However, the role and influence of water quality changes in the submerged zone under natural continuous random rainfall patterns are still not clear, especially when the rainfall is less than the pore water in the submerged zone. In this study, continuous rainfall events with different rainfall volume (light rain-light rain-heavy rain) were designed in a lab-scale woodchip mulched pyrite bioretention facility to test the effects of rainfall pattern. The results exhibited that light rain events significantly affected the pollutant removal performance of bioretention for the next rainfall. Different effects were observed during the long-term operation. In the 5th month, light rain reduced the ammonia removal efficiency of subsequent rainstorm events by 8.70%, while in the 12th month, when nitrate leakage occurred, light rain led to a 40.24% reduction in the next heavy rain event's nitrate removal efficiency. Additionally, light rain would also affect the concentration of by-products in the next rainfall. Following a light rain, the concentration of sulfate in the subsequent light rainfall can increase by 24.4 mg/L, and by 11.92 mg/L in a heavy rain. The water quality in the submerged zone and media characteristics analysis suggested that nitrogen conversion capacity of the substrate and microbes, such as Nitrospira (2.86%) and Thiobacillus (35.71%), as well as the in-situ accumulation of pollutants under light rain played important roles. This study clarifies the relationship between successive rainfall events and provides a more comprehensive understanding of bioretention facilities. This is beneficial for field study of bioretention facilities in the face of complex rainfall events.


Subject(s)
Rain , Nitrates/analysis , Denitrification , Nitrogen/analysis , Ammonia/analysis , Water Pollutants, Chemical/analysis , Water Quality
6.
Acad Radiol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852002

ABSTRACT

RATIONALE AND OBJECTIVES: The pericoronary fat attenuation index (FAI) values around plaques may reveal the relationship between periplaque vascular inflammation and different plaque component volume fractions. We aimed to evaluate the potential associations between periplaque FAI values and plaque component volume fractions. MATERIALS AND METHODS: 496 patients (1078 lesions) with coronary artery disease, who underwent computed tomography angiography (CCTA) between September 2022 and August 2023, were analyzed retrospectively. Each lesion was characterized and the plaque component volume fractions and periplaque FAI values were measured. Multiple linear regression, weighted quantile sum (WQS) regression, and quantile g-computation (Qgcomp) were used to explore the relationship between plaque component volume fractions and the risk of elevated periplaque FAI values. RESULTS: After adjusting for clinical characteristics, multiple linear regression identified that lipid components volume fraction (ß = 0.162, P < 0.001) were independent risk factors for elevated periplaque FAI values whereas calcified components volume fraction (ß = -0.066, P = 0.025) were independent protective factors. The WQS regression models indicated an increase in the overall confounding effect of the adjusted lipid indices and plaque composition volume fraction on the risk of elevated periplaque FAI values (P = 0.004). Qgcomp analysis indicated lipid component volume fraction and calcified component volume fraction was positively and negatively correlated with elevated plaque FAI values, respectively (all P < 0.05). CONCLUSIONS: Periplaque FAI values quantified by CCTA were strongly correlated with lipid and calcification component volume fractions.

7.
JTCVS Tech ; 24: 41-49, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38835580

ABSTRACT

Objective: Reports on aortic and mitral double-valve replacement through total thoracoscopy are scarce, with surgical techniques constantly evolving. We aimed to compare the feasibility and safety between total thoracoscopic double-valve replacement and median sternotomy double-valve replacement. Methods: From November 2021 to March 2023, we performed double-valve replacements in 76 patients using the total thoracoscopic double-valve replacement. The control group comprised 77 patients who underwent median sternotomy double-valve replacement. We analyzed data on baseline characteristics, perioperative events, and early postoperative outcomes. Results: In the total thoracoscopic double-valve replacement group, the cardiopulmonary bypass and aortic crossclamping times were 174.20 ± 38.87 minutes and 120.20 ± 19.54 minutes, respectively; both were significantly longer compared with those in the median sternotomy double-valve replacement group (cardiopulmonary bypass: 123.65 ± 15.33 minutes; aortic crossclamping: 82.86 ± 9.51 minutes, P < .001). The total thoracoscopic double-valve replacement group exhibited an extended operative duration, with a mean of 4.40 ± 0.76 hours, in contrast to 3.21 ± 0.68 hours in the median sternotomy double-valve replacement group (P < .001). Postoperatively, the total thoracoscopic double-valve replacement group demonstrated a significantly shorter mechanical ventilation duration (9.29 ± 3.12 hours) and reduced intensive care unit stay time (24.31 ± 7.29 hours) than the median sternotomy double-valve replacement group (11.49 ± 4.27 hours and 26.76 ± 5.89 hours, respectively; P values of .019 and .040, respectively). Furthermore, the total thoracoscopic double-valve replacement group experienced a shorter postoperative hospitalization time, averaging 6.21 ± 1.58 days, than the median sternotomy double-valve replacement group (8.35 ± 1.07 days, P < .001). The total thoracoscopic double-valve replacement group also exhibited significantly lower chest drainage volume (average 223.91 ± 53.93 mL) than the median sternotomy double-valve replacement group (382.56 ± 61.87 mL, P < .001). In terms of transfusion rates, the total thoracoscopic double-valve replacement group (9.21%) showed a marked reduction compared with the median sternotomy double-valve replacement group (36.36%, P < .001). Both groups had similar major complications. Conclusions: The initial results of the total thoracoscopic double-valve replacement underscore its safety and efficacy. This approach extends the applicability of total thoracoscopic cardiac surgery and warrants deeper exploration.

8.
World J Orthop ; 15(5): 390-399, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38835688

ABSTRACT

Combined femoral and acetabular anteversion is the sum of femoral and acetabular anteversion, representing their morphological relationship in the axial plane. Along with the increasing understanding of hip dysplasia in recent years, numerous scholars have confirmed the role of combined femoral and acetabular anteversion in the pathological changes of hip dysplasia. At present, the reconstructive surgery for hip dysplasia includes total hip replacement and redirectional hip preservation surgery. As an important surgery index, combined femoral and acetabular anteversion have a crucial role in these surgeries. Herein, we discuss the role of combined femoral and acetabular anteversion in pathological changes of hip dysplasia, total hip replacement, and redirectional hip preservation surgery.

9.
IEEE Trans Biomed Eng ; PP2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935473

ABSTRACT

OBJECTIVE: The high prevalence of osteoarthritis emphasizes the need for a cost-effective and accessible method for its early diagnosis. Recently, the portability and affordability of very-low-field (VLF) magnetic resonance imaging (MRI, 10-100 mT) have caused it to gain popularity. Nevertheless, there is insufficient evidence to quantify early degenerative changes in cartilage using VLF MRI. This study assessed the potential of T1ρ and T2 mapping for detecting degenerative changes in porcine cartilage specimens using a 50 mT MRI scanner. METHODS: T2- and T1ρ-weighted images were acquired using a 50 mT MRI scanner with 2D spin-echo and triple-refocused T1ρ preparation sequences. MRI scans of porcine cartilage were also acquired using a 3 T MRI scanner for comparison. A mono-exponential algorithm was applied to fit a series of T2- and T1ρ-weighted images. T2 values for CuSO4·5H2O solutions measured via Carr-Purcell-Meiboom-Gill (CPMG) and spin-echo sequences were compared to verify the algorithm's reliability. The nonparametric Kruskal-Wallis statistical test was used to compare T2 and T1ρ values. Experimental repeatability was assessed using the root-mean-square of the coefficient of variation (rmsCV). RESULTS: T2 values of the CuSO4·5H2O solutions obtained using the spin-echo sequence showed differences within 2.3% of those obtained using the CPMG sequence, indicating the algorithm's reliability. The T1ρ values for varying concentrations of agarose gel solutions were higher than the T2 values. Furthermore, 50 mT and 3 T MRI results showed that both the T1ρ and T2 values were significantly higher for porcine cartilage degraded for 6 h vs intact cartilage, with p-values of 0.006 and 0.01, respectively. Our experimental results showed good reproducibility (rmsCV < 8%). CONCLUSION: We demonstrated the feasibility of quantitative cartilage imaging via T2 and T1ρ mapping at 50 mT MRI for the first time.

10.
Sci Total Environ ; 945: 174128, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908593

ABSTRACT

With the continuous increase in global air transportation, the impact of ultrafine particulate matter (PM) emissions from aviation on human health and environmental pollution is becoming increasingly severe. In addition to carbon reduction throughout the lifecycle, Sustainable Aviation Fuels (SAF) also represent a significant pathway for reducing PM emissions. However, due to issues such as airworthiness safety and adaptability, existing research has mostly focused on the emission performance of SAF when blended with traditional fuels at <50 %, leaving the emission characteristics of higher blending ratios to be explored. In this study, using measurement methods recommended by the International Civil Aviation Organization (ICAO), the PM emission reduction characteristics of small turbofan engines fueled with 100 % Hydroprocessed Esters and Fatty Acids (HEFA)-SAF were experimentally evaluated and compared with traditional fuels RP-3 and Diesel, while avoiding the interference of lubricant blending combustion. The results showed that the peak number concentration of particle size distribution (PSD), PM total number, as well as the number and mass concentration of non-volatile particulate matter (nvPM) decreased initially and then increased with rising thrust conditions. HEFA-SAF exhibits PSD with smaller diameters, and the Geometric Mean Diameter (GMD) ranges from 7.7 nm to 20.3 nm under all conditions. Both volatile particulates (vPM) and nvPM from HEFA-SAF are significantly reduced, with nvPM number emission index (EIn) being 92 % and 71 % lower than Diesel and RP-3, respectively. The nvPM mass emission index (EIm) also shows reductions of 96 % and 89 % compared to Diesel and RP-3. Microscopic characterization also indicated that using HEFA-SAF emitted fewer and smaller PMs. This study establishes a foundation for evaluating the effectiveness of 100 % SAF in reducing PM emissions within the aviation sector, and contributes to the airworthiness regulations development related to the use of SAF in a variety of application environments, alongside enhancing environmental protection measures.

11.
Food Chem ; 457: 140186, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38924911

ABSTRACT

Qu-aroma is of great significance for evaluation the quality of Daqu starter. This study aimed to decode the Qu-aroma of medium-temperature Daqu (MT-Daqu) via "top-down" and "bottom-up" approaches. Firstly, 52 aroma descriptors were defined to describe the MT-Daqu aroma by quantitative descriptive analysis. Secondly, 193 volatile organic compounds (VOCs) were identified from 42 MT-Daqu samples by HS-SPME-GC-MS, and 43 dominant VOCs were screened out by frequence of occurrence or abundance. By Thin Film (TF)-SPME-GC-O-MS, 27 odors and 90 VOCs were detected in MT-Daqu mixture, and 14 odor-active VOCs were screened out by odor intensity. Thirdly, a five-level MT-Daqu aroma wheel was constructed by matching 52 aroma descriptors and 37 aroma-active VOCs. Finally, Qu-aroma of MT-Daqu was reconstructed with 37 aroma-active VOCs and evaluated by omission experiments. Hereinto, 26 key aroma-active VOCs were determined by OAV value ≥1, including isovaleric acid, 1-hexanol, isovaleraldehyde, 2-octanone, trimethylpyrazine, γ-nonalactone, 4-vinylguaiacol, etc.

12.
Gut Microbes ; 16(1): 2370634, 2024.
Article in English | MEDLINE | ID: mdl-38935546

ABSTRACT

Diet is a key player in gut-liver axis. However, the effect of different dietary patterns on gut microbiota and liver functions remains unclear. Here, we used rodent standard chow and purified diet to mimic two common human dietary patterns: grain and plant-based diet and refined-food-based diet, respectively and explored their impacts on gut microbiota and liver. Gut microbiota experienced a great shift with notable increase in Desulfovibrio, gut bile acid (BA) levels elevated significantly, and liver inflammation was observed in mice fed with the purified diet. Liver inflammation and elevated gut BA levels also occurred in mice fed with the chow diet after receiving Desulfovibrio desulfuricans ATCC 29,577 (DSV). Restriction of sulfur-containing amino acids (SAAs) prevented liver injury mainly through higher hepatic antioxidant and detoxifying ability and reversed the elevated BA levels due to excess Desulfovibrio. Ex vivo fermentation of human fecal microbiota with primary BAs demonstrated that DSV enhanced production of secondary BAs. Higher concentration of both primary and secondary BAs were found in the gut of germ-free mice after receiving DSV. In conclusion, Restriction of SAAs in diet may become an effective dietary intervention to prevent liver injury associated with excess Desulfovibrio in the gut.


Subject(s)
Desulfovibrio , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Humans , Desulfovibrio/metabolism , Male , Bile Acids and Salts/metabolism , Amino Acids/metabolism , Diet , Feces/microbiology , Feces/chemistry , Sulfur/metabolism , Amino Acids, Sulfur/metabolism
13.
J Agric Food Chem ; 72(27): 15265-15275, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38918075

ABSTRACT

Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Lactobacillales , Liver , Mice, Inbred C57BL , Probiotics , Animals , Mice , Probiotics/administration & dosage , Liver/metabolism , Male , Humans , Bile Acids and Salts/metabolism , Lactobacillales/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/microbiology , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/blood , Alanine Transaminase/metabolism , Alanine Transaminase/blood , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Ethanol/adverse effects
14.
Sci Rep ; 14(1): 13234, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853174

ABSTRACT

The ionosphere can be artificially modified by employing ground-based high-power high-frequency electromagnetic waves to irradiate the ionosphere. This modification is achieved through the nonlinear interaction between the electromagnetic waves and the ionospheric plasma, leading to changes in the physical properties and structure of the ionosphere. The degree of artificial modification of the ionosphere is closely related to the heating energy density of high-frequency pump waves. Due to the high density of neutral constituents in the lower ionosphere and the high frequency of electron-neutral collisions, the energy of heating pump waves will be absorbed and attenuated during the penetration of the low ionosphere, seriously affecting the heating effect. This paper proposes a method to reduce the absorption of ionospheric heating pump waves by releasing electron attachment chemicals into low ionosphere to form a large-scale electron density hole. A model for mitigating pump waves absorption based on SF6 release is established, and the absorption at different frequencies is quantitatively calculated. The propagation characteristics of high-frequency signals in ionospheric holes are studied using a three-dimensional ray tracing method, and the results demonstrate that the chemical release method not only reduces the absorption attenuation of heating pump waves but also forms spherical electron density holes, which exhibit a focusing effect on the heating beam and enhance the heating effect. The results are of great significance for understanding the nonlinear interaction between electromagnetic wave and ionospheric plasma and improving the ionospheric heating efficiency.

15.
Polymers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891443

ABSTRACT

Ternary polymer solar cells (PSCs) are currently the simplest and most efficient way to further improve the device performance in PSCs. To find high-performance organic photovoltaic materials, the established connection between the material structure and device performance before fabrication is of great significance. Herein, firstly, a database of the photovoltaic performance in 874 experimental PSCs reported in the literature is established, and three different fingerprint expressions of a molecular structure are explored as input features; the results show that long fingerprints of 2D atom pairs can contain more effective information and improve the accuracy of the models. Through supervised learning, five machine learning (ML) models were trained to build a mapping of the photovoltaic performance improvement relationship from binary to ternary PSCs. The GBDT model had the best predictive ability and generalization. Eighteen key structural features from a non-fullerene acceptor and the third components that affect the device's PCE were screened based on this model, including a nitrile group with lone-pair electron, a halogen atom, an oxygen atom, etc. Interestingly, the structural features for the enhanced device's PCE were essentially increased by the Jsc or FF. More importantly, the reliability of the ML model was further verified by preparing the highly efficient PSCs. Taking the PM6:BTP-eC9:PY-IT ternary PSC as an example, the PCE prediction (18.03%) by the model was in good agreement with the experimental results (17.78%), the relative prediction error was 1.41%, and the relative error between all experimental results and predicted results was less than 5%. These results indicate that ML is a useful tool for exploring the photovoltaic performance improvement of PSCs and accelerating the design and application with highly efficient non-fullerene materials.

16.
Huan Jing Ke Xue ; 45(6): 3649-3660, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897784

ABSTRACT

This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.


Subject(s)
Antioxidants , Cadmium , Chitosan , Seedlings , Triticum , Triticum/metabolism , Triticum/drug effects , Triticum/growth & development , Cadmium/toxicity , Cadmium/metabolism , Chitosan/metabolism , Chitosan/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Antioxidants/metabolism , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism
17.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886427

ABSTRACT

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Subject(s)
Ammonia , Fertilizers , Nitrogen , Nitrous Oxide , Triticum , Water , Triticum/growth & development , Triticum/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Ammonia/analysis , Ammonia/metabolism , China , Water/analysis , Water/metabolism , Agricultural Irrigation/methods , Seasons , Biomass , Soil/chemistry
18.
Avian Pathol ; : 1-10, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887084

ABSTRACT

Ascites syndrome (AS) in broiler chickens, also known as pulmonary arterial hypertension (PAH), is a significant disease in the poultry industry. It is a nutritional metabolic disease that is closely associated with hypoxia-inducible factors and rapid growth. The rise in pulmonary artery pressure is a crucial characteristic of AS and is instrumental in its development. Hypoxia-inducible factor 1α (HIF-1α) is an active subunit of a key transcription factor in the oxygen-sensing pathway. HIF-1α plays a vital role in oxygen homeostasis and the development of pulmonary hypertension. Studying the effects of HIF-1α on pulmonary hypertension in humans or mammals, as well as ascites in broilers, can help us understand the pathogenesis of AS. Therefore, this review aims to (1) summarize the mechanism of HIF-1α in the development of pulmonary hypertension, (2) provide theoretical significance in explaining the mechanism of HIF-1α in the development of pulmonary arterial hypertension (ascites syndrome) in broilers, and (3) establish the correlation between HIF-1α and pulmonary arterial hypertension (ascites syndrome) in broilers. HIGHLIGHTSExplains the hypoxic mechanism of HIF-1α.Linking HIF-1α to pulmonary hypertension in broilers.Explains the role of microRNAs in pulmonary arterial hypertension in broilers.

20.
Front Cell Infect Microbiol ; 14: 1368473, 2024.
Article in English | MEDLINE | ID: mdl-38766475

ABSTRACT

Objective: To analyze the amino acid substitution caused by mutations in the major hydrophilic region (MHR) of the S-region genes in the serum samples of occult hepatitis B virus infection (OBI), and to explore the reasons for the missed detection of HBsAg. Method: The full-length gene of the S-region in hepatitis B virus(HBV) in the chronic hepatitis B virus(CHB)(10 samples) and OBI groups(42 samples) was amplified using a lab-developed, two-round PCR amplification technology. The PCR amplification products were sequenced/clone sequenced, and the nucleotide sequences of the S-region gene in HBV were compared to the respective genotype consensus sequence. Results: Only 20 of the 42 samples in the OBI group had the S-region genes successfully amplified, with the lowest HBV DNA load of 20.1IU/ml. As S-region genes in HBV, 68 cloned strains were sequenced. In the OBI and CHB groups MHR region, with a mutation rate of 3.21% (155/4828) and 0.70% (5/710). The genetic mutation rate was significantly higher in the OBI group than in the CHB group (P<0.05). The common mutation types in the MHR region were: I126T, L162R, K122E, C124R, and C147Y.Mutations at s122, s126, and s162 were associated with subgenotypes, most of which being C genotypes. The high-frequency mutation sites L162R and K122E found in this study have not been reported in previous literature. Conclusion: The results of this study confirmed that MHR mutations can cause the missed detection of HBsAg, giving rise to OBI.


Subject(s)
DNA, Viral , Genotype , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B Surface Antigens/blood , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Adult , Female , Male , DNA, Viral/genetics , DNA, Viral/blood , Middle Aged , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/blood , Mutation , Amino Acid Substitution , Viral Load , Sequence Analysis, DNA , Polymerase Chain Reaction/methods , Hepatitis B/virology , Hepatitis B/diagnosis , Mutation Rate , Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...