Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Musculoskelet Dis ; 15: 1759720X231158198, 2023.
Article in English | MEDLINE | ID: mdl-36937823

ABSTRACT

Osteoarthritis (OA) is the commonest musculoskeletal disease worldwide, with an increasing prevalence due to aging. It causes joint pain and disability, decreased quality of life, and a huge burden on healthcare services for society. However, the current main diagnostic methods are not suitable for early diagnosing patients of OA. The use of machine learning (ML) in OA diagnosis has increased dramatically in the past few years. Hence, in this review article, we describe the research progress in the application of ML in the early diagnosis of OA, discuss the current trends and limitations of ML approaches, and propose future research priorities to apply the tools in the field of OA. Accurate ML-based predictive models with imaging techniques that are sensitive to early changes in OA ahead of the emergence of clinical features are expected to address the current dilemma. The diagnostic ability of the fusion model that combines multidimensional information makes patient-specific early diagnosis and prognosis estimation of OA possible in the future.

2.
New Phytol ; 231(4): 1462-1477, 2021 08.
Article in English | MEDLINE | ID: mdl-33999454

ABSTRACT

Cytokinins are important for in vitro shoot regeneration in plants. Cytokinin N-glucosides are produced via an irreversible glycosylation pathway, which regulates the endogenous cytokinin content. Although cytokinin N-glucoside pathways have been uncovered in higher plants, no regulator has been identified to date. We performed a metabolome genome-wide association study (mGWAS), weighted gene co-expression network analysis (WGCNA), and expression quantitative trait nucleotide (eQTN) mappings to build a core triple genetic network (mGWAS-gene expression-phenotype) for the trans-zeatin N-glucoside (ZNG) metabolite using data from 435 unrelated Populus tomentosa individuals. Variation of the ZNG level in poplar is attributed to the differential transcription of PtoWRKY42, a member of WRKY multigene family group IIb. Functional analysis revealed that PtoWRKY42 negatively regulated ZNG accumulation by binding directly to the W-box of the UDP-glycosyltransferase 76C 1-1 (PtoUGT761-1) promoter. Also, PtoWRKY42 was strongly induced by leaf senescence, 6-BA, wounding, and salt stress, resulting in a reduced ZNG level. We identified PtoWRKY42, a negative regulator of cytokinin N-glucosides, which contributes to the natural variation in ZNG level and mediates ZNG accumulation by directly modulating the key glycosyltransferase gene PtoUGT76C1-1.


Subject(s)
Cytokinins , Populus , Gene Regulatory Networks , Genome-Wide Association Study , Populus/genetics , Zeatin
3.
Int J Mol Sci ; 21(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204454

ABSTRACT

Cytokinins play important roles in the growth and development of plants. Physiological and photosynthetic characteristics are common indicators to measure the growth and development in plants. However, few reports have described the molecular mechanisms of physiological and photosynthetic changes in response to cytokinin, particularly in woody plants. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression in response to the external environment. In this study, we examined genome-wide DNA methylation variation and transcriptional variation in poplar (Populus tomentosa) after short-term treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA). We identified 460 significantly differentially methylated regions (DMRs) in response to 6-BA treatment. Transcriptome analysis showed that 339 protein-coding genes, 262 long non-coding RNAs (lncRNAs), and 15,793 24-nt small interfering RNAs (siRNAs) were differentially expressed under 6-BA treatment. Among these, 79% were differentially expressed between alleles in P. tomentosa, and 102,819 allele-specific expression (ASE) loci in 19,200 genes were detected showing differences in ASE levels after 6-BA treatment. Combined DNA methylation and gene expression analysis demonstrated that DNA methylation plays an important role in regulating allele-specific gene expression. To further investigate the relationship between these 6-BA-responsive genes and phenotypic variation, we performed SNP analysis of 460 6-BA-responsive DMRs via re-sequencing using a natural population of P. tomentosa, and we identified 206 SNPs that were significantly associated with growth and wood properties. Association analysis indicated that 53% of loci with allele-specific expression had primarily dominant effects on poplar traits. Our comprehensive analyses of P. tomentosa DNA methylation and the regulation of allele-specific gene expression suggest that DNA methylation is an important regulator of imbalanced expression between allelic loci.


Subject(s)
Benzyl Compounds/pharmacology , DNA Methylation/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/drug effects , Populus/genetics , Purines/pharmacology , Alleles , Epigenesis, Genetic , Genes, Plant/genetics , Plant Growth Regulators/pharmacology , Polymorphism, Single Nucleotide
4.
Tree Physiol ; 40(8): 1108-1125, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32159812

ABSTRACT

A stable leaf temperature provides plants with a suitable microenvironment for photosynthesis. With global warming, extreme temperatures have become more frequent and severe; therefore, it is increasingly important to understand the fine regulation of leaf temperature under heat stress. In this study, five poplar species (Populus tomentosa, Populus simonii, Populus euphratica, Populus deltoides and Populus trichocarpa) that live in different native environments were used to analyze leaf temperature regulation. Leaf temperatures were more stable in Populus simonii and Populus euphratica (adapted to water-deficient regions) under elevated ambient temperature. Although transpiration contributes strongly to leaf cooling in poplar, the thicker epidermis and mesophyll and lower absorbance of Populus simonii and Populus euphratica leaves also help reduce leaf temperature, since their leaves absorb less radiation. Co-expression network and association analysis of a natural population of P. simonii indicated that PsiMYB60.2, PsiMYB61.2 and PsiMYB61.1 play dominant roles in coordinating leaf temperature, stomatal conductance and transpiration rate in response to heat stress. Individuals with CT-GT-GT genotypes of these three candidate genes have significantly higher water-use efficiency, and balance leaf temperature cooling with photosynthetic efficiency. Therefore, our findings have clarified the genetic basis of leaf cooling among poplar species and laid the foundation for molecular breeding of thermostable, water-conserving poplar varieties.


Subject(s)
Populus/genetics , Heat-Shock Response , Plant Leaves/genetics , Plant Stomata , Temperature
5.
Mol Genet Genomics ; 294(6): 1511-1525, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31324970

ABSTRACT

DNA methylation and long non-coding RNAs (lncRNAs) regulate plant growth and development, but their relationship and effect on responses to the auxin phytohormone indole-3-acetic acid (IAA) remain largely unknown, particularly in woody plants such as poplar (Populus tomentosa). Following treatment of 1-year-old clonal plants with 100 µM IAA, key poplar lncRNA genes showed changes in methylation, but whole-genome methylation levels showed no significant change. Moreover, 100 µM IAA inhibited growth of the 1-year-old poplar clones, possibly through the suppression of photosynthesis. This inhibition had a long-term effect, persisting at 1 month after removal of the exogenous IAA. Transcriptome analysis identified two candidate lncRNA genes that show changes in expression following IAA treatment, TCONS_00003480 and TCONS_00004832. TCONS_00003480 contains the same microRNA target sites of ptc-miR6464 as the 4-coumarate: CoA ligase 2 transcript, which encodes a lignin biosynthesis enzyme. And TCONS_00004832 shares the same target sites of ptc-miR6437a with the Photosystem II reaction center protein D and Cytochrome C Oxidase 17 transcripts, which are related to photosynthesis. The two lncRNAs as the mimics to corresponding target genes of miRNAs to prevent them from degrading. Examination of lncRNA gene expression and methylation revealed a negative relationship (r = - 0.29, P < 0.05); moreover, hypermethylation of the two candidate lncRNA genes remained 1 month after IAA treatment, suggesting that changes in methylation might be involved in the long-term effects of plant hormones. Therefore, our study reveals a long-term effect of IAA on the growth of P. tomentosa, possibly via methylation-mediated epigenetic changes in lncRNA gene expression and the interaction with corresponding miRNAs, leading to regulation of genes related to photosynthesis and growth.


Subject(s)
DNA Methylation , Gene Expression Regulation, Plant , Indoleacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Populus/genetics , RNA, Long Noncoding/genetics , Cell Wall/metabolism , DNA Methylation/drug effects , Gene Expression Regulation, Plant/drug effects , MicroRNAs/metabolism , Photosynthesis/drug effects , Populus/drug effects , Populus/growth & development , Populus/metabolism , RNA, Long Noncoding/metabolism
6.
Plant Biotechnol J ; 17(1): 164-177, 2019 01.
Article in English | MEDLINE | ID: mdl-29797449

ABSTRACT

Complex RNA transcription and processing produces a diverse range catalog of long noncoding RNAs (lncRNAs), important biological regulators that have been implicated in osmotic stress responses in plants. Promoter upstream transcript (PROMPT) lncRNAs share some regulatory elements with the promoters of their neighbouring protein-coding genes. However, their function remains unknown. Here, using strand-specific RNA sequencing, we identified 209 differentially regulated osmotic-responsive PROMPTs in poplar (Populus simonii). PROMPTs are transcribed bidirectionally and are more stable than other lncRNAs. Co-expression analysis of PROMPTs and protein-coding genes divided the regulatory network into five independent subnetworks including 27 network modules. Significantly enriched PROMPTs in the network were selected to validate their regulatory roles. We used delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) to transport synthetic nucleic acids into live tissues to mimic overexpression and interference of a specific PROMPT. The altered expression of PROMPT_1281 induced the expression of its cis and trans targets, and this interaction was governed by its secondary structure rather than just its primary sequence. Based on this example, we proposed a model that a concentration gradient of PROMPT_1281 is established, which increases the probability of its interaction with targets near its transcription site that shares common motifs. Our results firstly demonstrated that PROMPT_1281 act as carriers of MYB transcription factors to induce the expression of target genes under osmotic stress. In sum, our study identified and validated a set of poplar PROMPTs that likely have regulatory functions in osmotic responses.


Subject(s)
Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Populus/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Osmotic Pressure , Plant Proteins/physiology , Populus/metabolism , Populus/physiology , Promoter Regions, Genetic/physiology , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...