Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Genes Dis ; 11(2): 952-963, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37692492

ABSTRACT

Osteosarcoma is the most common primary malignancy of bones and primarily occurs in adolescents and young adults. However, a second smaller peak of osteosarcoma incidence was reported in the elderly aged more than 60. Elderly patients with osteosarcoma exhibit different characteristics compared to young patients, which usually results in a poor prognosis. The mechanism underlying osteosarcoma development in elderly patients is intriguing and of significant value in clinical applications. Senescent cells can accelerate tumor progression by metabolic reprogramming. Recent research has shown that methylmalonic acid (MMA) was significantly up-regulated in the serum of older individuals and played a central role in the development of aggressive characteristics. We found that the significant accumulation of MMA in elderly patients imparted proliferative potential to osteosarcoma cells. The expression of MAFB was excessively up-regulated in osteosarcoma specimens and was further enhanced in response to MMA accumulation as the patient aged. Specifically, we first confirmed a novel molecular mechanism between cellular senescence and cancer, in which the MMA-driven transcriptional reprogramming of the MAFB-NOTCH3 axis accelerated osteosarcoma progression via the activation of PI3K-AKT pathways. Moreover, the down-regulation of the MAFB-NOTCH3 axis increased the sensitivity and effect of AKT inhibitors in osteosarcoma through significant inhibition of AKT phosphorylation. In conclusion, we confirmed that MAFB is a novel age-dependent biomarker for osteosarcoma, and targeting the MAFB-NOTCH3 axis in combination with AKT inhibition can serve as a novel therapeutic strategy for elderly patients with osteosarcoma in experimental and clinical trials.

3.
Biochem Biophys Res Commun ; 615: 136-142, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35617800

ABSTRACT

Hyperthyroidism can potentiate arrhythmias and cardiac hypertrophy, whereas Ca2+/calmodulin-dependent kinase II (CaMKII) promotes maladaptive myocardial remodeling. However, it remains unclear whether CaMKII contributes to the progression of hyperthyroid heart disease (HHD). This study demonstrated that CaMKII inhibition can relieve adverse myocardial remodeling and reduce sinus tachycardia, isoproterenol-induced atrial fibrillation, and ventricular arrhythmias in hyperthyroid mice with preserved heart function. Hyperthyroid cardiac hypertrophy was promoted by CaMKII upregulation-induced HDAC4/MEF2a activation. Briefly, CaMKII inhibition benefits HHD management greatly in mice by preventing arrhythmias and maladaptive remodeling.


Subject(s)
Atrial Fibrillation , Hyperthyroidism , Animals , Atrial Fibrillation/prevention & control , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cardiomegaly/prevention & control , Hyperthyroidism/complications , Mice , Myocardium , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL
...