Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 187(4): 864-883, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28342444

ABSTRACT

Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.


Subject(s)
Central Nervous System/abnormalities , Farber Lipogranulomatosis/complications , Farber Lipogranulomatosis/pathology , Nervous System Malformations/etiology , Nervous System Malformations/pathology , Acid Ceramidase/metabolism , Animals , Behavior, Animal , Central Nervous System/pathology , Cerebellum/pathology , Cerebellum/ultrastructure , Cerebrum/pathology , Cerebrum/ultrastructure , Homozygote , Hydrocephalus/pathology , Mice , Mice, Transgenic , Motor Activity , Neurons/pathology , Neurons/ultrastructure , Phenotype , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sphingolipids/metabolism , Time Factors
2.
Neuropsychopharmacology ; 39(13): 3100-11, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24998620

ABSTRACT

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide repeat expansion in the FMR1 gene that codes for fragile X mental retardation protein (FMRP). To determine if FMRP expression in the central nervous system could reverse phenotypic deficits in the Fmr1 knockout (KO) mouse model of FXS, we used a single-stranded adeno-associated viral (AAV) vector with viral capsids from serotype 9 that contained a major isoform of FMRP. FMRP transgene expression was driven by the neuron-selective synapsin-1 promoter. The vector was delivered to the brain via a single bilateral intracerebroventricular injection into neonatal Fmr1 KO mice and transgene expression and behavioral assessments were conducted 22-26 or 50-56 days post injection. Western blotting and immunocytochemical analyses of AAV-FMRP-injected mice revealed FMRP expression in the striatum, hippocampus, retrosplenial cortex, and cingulate cortex. Cellular expression was selective for neurons and reached ∼ 50% of wild-type levels in the hippocampus and cortex at 56 days post injection. The pathologically elevated repetitive behavior and the deficit in social dominance behavior seen in phosphate-buffered saline-injected Fmr1 KO mice were reversed in AAV-FMRP-injected mice. These results provide the first proof of principle that gene therapy can correct specific behavioral abnormalities in the mouse model of FXS.


Subject(s)
Brain/metabolism , Dependovirus/physiology , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy , Animals , Brain/pathology , Dependovirus/genetics , Disease Models, Animal , Epilepsy, Reflex/etiology , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/complications , Fragile X Syndrome/pathology , Gene Expression Regulation/genetics , Genetic Vectors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Phenotype , Social Dominance , Statistics, Nonparametric , Stereotyped Behavior/physiology , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...