Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ANZ J Surg ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38817200

ABSTRACT

BACKGROUNDS: Liver resection plus lymphadenectomy is essential to ensure precise staging in patients with intrahepatic cholangiocarcinoma (ICC). This study aimed to investigate the influence of the clinical status of lymph nodes on the survival outcomes in ICC patients. METHODS: Between January 2015 and December 2020, consecutive patients diagnosed with ICC who underwent liver resection plus lymphadenectomy were enrolled. Clinical assessment of lymph node status included positron emission tomography/computed tomography examination by radiologists pre-operatively, alongside intraoperative abdominal examination by the surgical team. Retrospective collection and analysis of clinical information alongside survival data were performed to assess outcomes. RESULTS: The study included a total of 359 patients, with 291 (81.0%) and 151 (42.1%) displaying clinically and pathologically positive lymph nodes, respectively. The clinical assessment method had a sensitivity of 81.2% and a specificity of 54.3%. Following a median follow-up period of 32 months, the overall survival (OS) rates at 1, 3, and 5 years were 69.1%, 50.6%, and 41.2%, respectively, while the disease-free survival (DFS) rates were 60.7%, 42.8%, and 40.1%, respectively, across the cohort. Patients who had clinically positive but pathologically negative lymph nodes recorded the highest median OS (52 months) and median DFS (32 months). Conversely, those who were clinically negative but pathologically positive experienced the lowest median OS (16 months) and median DFS (8 months). CONCLUSION: The current approach to clinically assessing lymph node status in ICC has a significant rate of false positives. Patients with clinically positive but pathologically negative lymph nodes exhibit the most favourable survival outcomes.

2.
J Gene Med ; 26(5): e3689, 2024 May.
Article in English | MEDLINE | ID: mdl-38676365

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy characterized by a poor prognosis and closely linked to tumor stemness. However, the key molecules that regulate ICC stemness remain elusive. Although Y-box binding protein 1 (YBX1) negatively affects prognosis in various cancers by enhancing stemness and chemoresistance, its effect on stemness and cisplatin sensitivity in ICC remains unclear. METHODS: Three bulk and single-cell RNA-seq datasets were analyzed to investigate YBX1 expression in ICC and its association with stemness. Clinical samples and colony/sphere formation assays validated the role of YBX1 in stemness and sensitivity to cisplatin. AZD5363 and KYA1979K explored the interaction of YBX1 with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) and WNT/ß-catenin pathways. RESULTS: YBX1 was significantly upregulated in ICC, correlated with worse overall survival and shorter postoperative recurrence time, and was higher in chemotherapy-non-responsive ICC tissues. The YBX1-high group exhibited significantly elevated stemness scores, and genes linked to YBX1 upregulation were enriched in multiple stemness-related pathways. Moreover, YBX1 expression is significantly correlated with several stemness-related genes (SOX9, OCT4, CD133, CD44 and EPCAM). Additionally, YBX1 overexpression significantly enhanced the colony- and spheroid-forming abilities of ICC cells, accelerated tumor growth in vivo and reduced their sensitivity to cisplatin. Conversely, the downregulation of YBX1 exerted the opposite effect. The transcriptomic analysis highlighted the link between YBX1 and the PI3K/AKT and WNT/ß-catenin pathways. Further, AZD5363 and KYA1979K were used to clarify that YBX1 promoted ICC stemness through the regulation of the AKT/ß-catenin axis. CONCLUSIONS: YBX1 is upregulated in ICC and promotes stemness and cisplatin insensitivity via the AKT/ß-catenin axis. Our study describes a novel potential therapeutic target for improving ICC prognosis.


Subject(s)
Cholangiocarcinoma , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Y-Box-Binding Protein 1 , beta Catenin , Animals , Female , Humans , Male , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , beta Catenin/metabolism , beta Catenin/genetics , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/mortality , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics
3.
Mol Ther Nucleic Acids ; 23: 1066-1077, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33664991

ABSTRACT

The hepatoprotection of histone deacetylase sirtuin 1 (SIRT1) has been identified to attenuate ischemia-reperfusion (IR)-triggered inflammation and liver damage. This study was performed to characterize the function of SIRT1 in hepatic IR injury. In in vivo assays on liver-specific knockout mice of SIRT1, we first validated the effect of SIRT1 knockout on liver damage and XBP1/NLRP3 inflammasome activation. Next, we examined whether knockdown of XBP1/NLRP3 or miR-182 agomir could reverse the effect of SIRT1 knockout. In in vitro assays, NCTC1469 cells subjected to hypoxia/reoxygenation (H/R) were transduced with small interfering RNA (siRNA)/activator of SIRT1 or miR-182 agomir to confirm the effect of SIRT1 on NCTC1469 cell behaviors as well as the regulation of miR-182 and the XBP1/NLRP3 signaling pathway. Hepatic IR injury was appreciably aggravated in SIRT1 knockout mice, and SIRT1 knockdown abolished the inhibition of XBP1/NLRP3 inflammasome activation, which was reversed by NLRP3 knockdown, XBP1 knockdown, or miR-182 agomir. Mechanistically, miR-182 expression was positively regulated by SIRT1 in hepatic IR injury in mice, and miR-182 inhibited the expression of XBP1 by binding to the 3' untranslated region (UTR) of XBP1. The histone deacetylase SIRT1 inhibits the downstream XBP1/NLRP3 inflammatory pathway by activating miR-182, thus alleviating hepatic IR injury in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...