Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 275: 116255, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38552388

ABSTRACT

Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted. Employing murine and macrophage (RAW264.7) cellular models subjected to polystyrene nanoplastics (PS-NPs), our investigative approach encompassed an array of techniques: Cell Counting Kit-8 assays, flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) fluorescence staining, cell transfection, cell cycle scrutiny, genetic manipulation, messenger RNA expression profiling via quantitative real-time PCR, and protein expression evaluation through western blotting. The results showed that PS-NPs caused RAW264.7 cell apoptosis, leading to cell cycle arrest, and activated the cGAS-STING pathway. This resulted in NF-κB signaling activation and increased pro-inflammatory mediator expression. Importantly, PS-NPs-induced activation of NF-κB and its downstream inflammatory cascade were markedly diminished after the silencing of the STING gene. Our findings highlight the critical role of the cGAS-STING pathway in the immunotoxic effects induced by PS-NPs. We outline a new mechanism whereby nanoplastics may trigger dysregulated innate immune and inflammatory responses via the cGAS/STING pathway.


Subject(s)
Microplastics , NF-kappa B , Animals , Mice , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Immunity, Innate , Nucleotidyltransferases
2.
Cytokine Growth Factor Rev ; 75: 1-11, 2024 02.
Article in English | MEDLINE | ID: mdl-38061920

ABSTRACT

In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.


Subject(s)
Neoplasms , Humans , Combined Modality Therapy , Neoplasms/radiotherapy , Neoplasms/drug therapy , Immunotherapy , Tumor Microenvironment
3.
Sci Total Environ ; 913: 169606, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38159744

ABSTRACT

Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs.


Subject(s)
Microplastics , Nanoparticles , Animals , Mice , Polymethyl Methacrylate , Metabolomics/methods , Nanoparticles/toxicity , Organoids , Polytetrafluoroethylene , Polystyrenes/toxicity
4.
Exp Mol Med ; 55(12): 2596-2607, 2023 12.
Article in English | MEDLINE | ID: mdl-38036735

ABSTRACT

Exposure to nanomicroplastics (nano-MPs) can induce lung damage. The gut microbiota is a critical modulator of the gut-lung axis. However, the mechanisms underlying these interactions have not been elucidated. This study explored the role of lactate, a key metabolite of the microbiota, in the development of lung damage induced by nano-MPs (LDMP). After 28 days of exposure to nano-MPs (50-100 nm), mice mainly exhibited damage to the lungs and intestinal mucosa and dysbiosis of the gut microbiota. Lactate accumulation was observed in the lungs, intestines and serum and was strongly associated with the imbalance in lactic acid bacteria in the gut. Furthermore, no lactate accumulation was observed in germ-free mice, while the depletion of the gut microbiota using a cocktail of antibiotics produced similar results, suggesting that lactate accumulation in the lungs may have been due to changes in the gut microbiota components. Mechanistically, elevated lactate triggers activation of the HIF1a/PTBP1 pathway, exacerbating nano-MP-induced lung damage through modulation of the epithelial-mesenchymal transition (EMT). Conversely, mice with conditional knockout of Ptbp1 in the lungs (Ptbp1flfl) and PTBP1-knockout (PTBP1-KO) human bronchial epithelial (HBE) cells showed reversal of the effects of lactate through modulation of the HIF1a/PTBP1 signaling pathway. These findings indicate that lactate is a potential target for preventing and treating LDMP.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Mice , Lactic Acid/metabolism , Intestinal Mucosa/metabolism , Lung , Mice, Inbred C57BL , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/pharmacology
5.
Chemosphere ; 342: 140108, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714480

ABSTRACT

Nanoplastics have been widely studied as environmental pollutants, which can accumulate in the human body through the food chain or direct contact. Research has shown that nanoplastics can affect the immune system and mitochondrial function, but the underlying mechanisms are unclear. Lungs and macrophages have important immune and metabolic functions. This study explored the effects of 100 nm PS-NPs on innate immunity, mitochondrial function, and cellular metabolism-related pathways in lung (BEAS-2B) cells and macrophages (RAW264.7). The results had shown that PS-NPs exposure caused a decrease in mitochondrial membrane potential, intracellular ROS accumulation, and Ca2+ overload, and activated the cGAS-STING signaling pathway related to innate immunity. These changes had been observed at concentrations of PS-NPs as low as 60 µg/mL, which might have been comparable to environmental levels. Non-target metabolomics and Western Blotting results confirmed that PS-NPs regulated prostaglandin B1 and other metabolites to cause cell damage through the cGAS-STING pathway. Supplementation of prostaglandin B1 alleviated the immune activation and metabolic disturbance caused by PS-NPs exposure. This study identified PS-NPs-induced innate immune activation, mitochondrial dysfunction, and metabolic toxicity pathways, providing new insights into the potential for adverse outcomes of NPs in human life.

6.
Environ Res ; 238(Pt 2): 117188, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37775007

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are widespread persistent organic pollutants (POPs) associated with diseases including osteoporosis, altered immune function and cancer. However, few studies have investigated the association between PFAS mixture exposure and Depression in general populations. METHODS: Nationally representative data from the National Health and Nutrition Examination Survey (NHANES) (2005-2018) were used to analyze the association between PFAS and Depression in U.S. adults. Total 12,239 adults aged 20 years or older who had serum PFAS measured and answered Patient Health Questionnaire-9 (PHQ-9) were enrolled in this study. PFAS monomers detected in all 7 investigation cycles were included in the study. Generalized additive model (GAM) was used to fit smooth curves and threshold effect analysis was carried out to find the turning point of smooth curves. Generalized linear model (GLM) was used to describe the non-linear relationship between PFAS and depression and unconditioned logistic regression was used to risk analysis. RESULTS: The median of total serum PFAS concentration was 14.54 ng/mL. The curve fitting results indicated a U-shaped relationship between total serum PFAS and depression: PFAS< 39.66 ng/mL, A negative correlation between PHQ-9 score and serum PFAS concentration was observed (ß 0.047,95%CI -0.059, -0.036). The depression PHQ-9 score decreased with the increase of serum PFAS concentration. PFAS ≥ 39.66 ng/mL, A positive correlation was observed between PFAS and PHQ-9 score (ß 0.010,95% CI 0.003, 0.017). The depression PHQ-9 score increased with the increase of serum PFAS concentration. CONCLUSIONS: Our study provides new clues to the association of PFAS with depression, and large population-based cohort studies that can validate the causal association as well as toxicological mechanism studies are needed for validation.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Adult , Cross-Sectional Studies , Nutrition Surveys , Depression
7.
J Adv Res ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37541584

ABSTRACT

BACKGROUND: p53 wild-type lung cancer cells can develop radiation resistance. Circular RNA (circRNA) consists of a family of transcripts with exclusive structures. circRNA is critical in tumorigenesis and is a potential biomarker or therapeutic target. It is uncertain how circRNA expression and functions are regulated post-radiation in p53 wild-type cancer cells. METHODS: A549 or H1299 cells were divided into p53-wt and p53-KO groups by CRISPR/Cas9; both groups were subjected to 4 Gy ionizing radiation (IR: p53-wt-IR and p53-KO-IR). RNA-seq, CCK8, cell cycle, and other functional and mechanism experiments were performed in vivo. p53 gene knockout mice were generated to test the cell results in vitro. RESULTS: circRNAs were found in differential groups. circRNA_0006420 (IRSense) was upregulated in p53-wt cells but had the same expression level as p53-KO cells after radiation, indicating that p53 silencing prevents its upregulation after IR. In the presence of p53, upregulated IRSense post-radiation induces G2/M arrest by regulating DNA damage repair (DDR) pathway-related proteins. Meanwhile, upregulated IRSense post-radiation aggravates the radiation-induced epithelial-mesenchymal transition (EMT). Interestingly, in the presence of p53, it promotes IRSense/HUR/PTBP1 complex formation resulting in the promotion of the radiation-induced EMT. Moreover, c-Jun regulates the upregulation of p53 transcription after radiation treatment. For these lung cancer cells with p53, upregulated IRSense aggravates lung cancer cell proliferation and increases radiation resistance by interacting with HUR (ElAV-like protein 1) and PTBP1 (polypyrimidine tract-binding protein 1) in the nucleus. CONCLUSIONS: Lung cancer cells retaining p53 may upregulate circRNA_0006420 (IRSense) expression post radiation to form an IRSense/HUR/PTBP1 complex leading to radiotherapy resistance. This study furthers our understanding of the roles of circRNA in regulating the effect of radiotherapy and provides novel therapeutic avenues for effective clinical lung cancer therapies.

8.
MedComm (2020) ; 4(4): e327, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37457660

ABSTRACT

Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.

9.
Ecotoxicol Environ Saf ; 259: 115014, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37196524

ABSTRACT

As an environmental pollutant, profenofos (PFF) can seriously endanger human health through the food chain. Albicanol is a sesquiterpene compound with antioxidant, anti-inflammatory, and anti-aging properties. Previous studies have shown that Albicanol can antagonize apoptosis and genotoxicity caused by PFF exposure. However, the toxicity mechanism of PFF regulating hepatocyte immune function, apoptosis, and programmed necrosis and the role of Albicanol in this process have not been reported yet. In this study, grass carp hepatocytes (L8824) were treated with PFF (200 µM) or combined with Albicanol (5 ×10-5 µg mL-1) for 24 h to establish an experimental model. The results of JC-1 probe staining and Fluo-3 AM probe staining showed increased free calcium ions and decreased mitochondrial membrane potential in L8824 cells after PFF exposure, suggesting that PFF exposure may lead to mitochondrial damage. Real-time quantitative PCR and Western blot results showed that PFF exposure could increase the transcription of innate immunity-related factors (C3, Pardaxin 1, Hepcidin, INF-γ, IL-8, and IL-1ß) in L8824 cells. PFF up-regulated the TNF/NF-κB signaling pathway and the expression of caspase-3, caspase-9, Bax, MLKL, RIPK1, and RIPK3 and down-regulated the expression of Caspase-8 and Bcl-2. Albicanol can antagonize the above-mentioned effects caused by PFF exposure. In conclusion, Albicanol antagonized the mitochondrial damage, apoptosis, and necroptosis of grass carp hepatocytes caused by PFF exposure by inhibiting the TNF/NF-κB pathway in innate immunity.


Subject(s)
Carps , Sesquiterpenes , Humans , Animals , NF-kappa B/metabolism , Immunity, Innate , Apoptosis , Sesquiterpenes/pharmacology , Carps/metabolism
10.
Environ Sci Process Impacts ; 25(1): 26-36, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36337004

ABSTRACT

Due to their large-scale manufacture and widespread application, global concern regarding microplastics (MPs) has been increasing rapidly over the past decade, in particular their potential genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to accumulation of reactive oxygen species (ROS), DNA damage, cell death, inflammation or genetic regulation which in turn can have consequences for health, such as the induction of carcinogenesis. In this review, we presented a comprehensive landscape of the effects of MPs on genotoxicity including the molecular mechanisms. Followed by the MP research trend analysis from a global viewpoint including the comparative research between China and USA and point out that scientists should continue to substantially contribute to the field of MPs through more extensive academic investigation, global cooperation, and the development of novel control methods. Challenges are also discussed. Overall, this review provides insights into the genotoxic effects of MPs on human health and related research trends in this field.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics , East Asian People , China , Environmental Monitoring , Water Pollutants, Chemical/analysis
11.
Postgrad Med ; 133(4): 428-435, 2021 May.
Article in English | MEDLINE | ID: mdl-33554703

ABSTRACT

Objective: Sex-related differences are well established among stroke patients, including the incidence and prevalence of stroke being higher among men than among women. However, the sex-related factors for differences in the outcomes of strokes of undetermined source (SUSs) have not been well described, especially in the Chinese population. We assessed the sex-related differences in the factors associated with outcomes among patients with SUSs in China.Method: Between January 2011 and December 2018, we recruited 205 patients diagnosed with SUSs from Kailuan General Hospital (China). The clinical features, risk factors, and outcome data were collected for the patients at 3 and 12 months after their strokes.Results: There were higher frequencies of hyperlipidemia (27.8% vs. 26.4%), smoking (41.4% vs. 5.6%), and alcohol consumption (21.8% vs. 0%) for male patients than for female patients. However, women were more likely than men to have hypertension (63.9% vs. 46.6%), diabetes (27.8% vs. 20.3%), and atrial fibrillation (9.7% vs. 5.3%); they were also more likely to be obese (16.7% vs. 12.0%). There were no significant differences in outcome between the sexes. Among men, severe strokes were associated with higher case fatality and disability risks at 12 months after stroke onset; hyperlipidemia was a risk factor for recurrence within 3 months of the initial stroke. Among women, severe strokes also increased the risk of disability; in women, high total cholesterol (TC) and age were associated with poor outcomes.Conclusion: The factors associated with outcomes in SUS differed by sex. For male patients, more severe stroke and hyperlipidemia were associated with poor outcomes in SUS. Risk factors for poor outcomes in female patients were stroke severity, age, and TC level. These findings suggest that taking measures to manage blood lipid levels and severe stroke among patients with SUS is important for both male and female patients and is crucial for reducing the burden of stroke in China.


Subject(s)
Stroke/epidemiology , Adult , Aged , Aged, 80 and over , Alcohol Drinking/epidemiology , Cardiovascular Diseases/epidemiology , China/epidemiology , Diabetes Mellitus/epidemiology , Female , Humans , Hyperlipidemias/epidemiology , Incidence , Male , Middle Aged , Obesity/epidemiology , Prospective Studies , Risk Factors , Severity of Illness Index , Sex Factors , Smoking/epidemiology
12.
Polymers (Basel) ; 10(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30960821

ABSTRACT

In this work, an easy way to prepare the polylactic acid (PLA)/wheat straw fiber (WSF) composite was proposed. The method involved uses either the dopamine-treated WSF or the two-step montmorillonite (MMT)-modified WSF as the filler material. In order to achieve the dispersibility and exfoliation of MMT, it was modified by 12-aminododecanoic acid using a two-step route. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the modified MMT and the coated WSF. As for the properties of PLA/WSF composites, some thermal (using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis) and mechanical properties (flexural, tensile, and impact) were analyzed. The results showed that the dopamine was successfully coated onto the WSF. Furthermore, Na-MMT was successfully transformed to organo-montmorillonite (OMMT) and formed an exfoliated structure. In addition, a better dispersion of MMT was obtained using the two-step treatment. The interlayer spacing of modified MMT was 4.06 nm, which was 123% higher than that of the unmodified MMT. Additionally, FT-IR analysis suggested that OMMT diffused into the PLA matrix. The thermogravimetric analysis (TGA) showed that a higher thermal stability of PLA/WSF composites was obtained for the modified MMT and dopamine. The results also showed that both the dopamine treated WSF and the two-step-treated MMT exhibited a positive influence on the mechanical properties of PLA/WSF composites, especially on the tensile strength, which increased by 367% compared to the unmodified precursors. This route offers researchers a potential scheme to improve the thermal and mechanical properties of PLA/WSF composites in a low-cost way.

13.
Polymers (Basel) ; 10(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30960971

ABSTRACT

Cellulose nanocrystals/chitosan/polyvinyl alcohol (CNC/CS/PVA) composite nanofibrous films were prepared while using an electrospinning technique and successfully thiol-functionalized. Then, the modified films were used for the sorption-desorption of Cu(II) and Pb(II) ions. Subsequently, the adsorption capacity of the films was investigated by changing the CNC loading level, solution pH, and adsorption time. Results showed that the adsorption of metal ions by the films was the best with CNC loading level of 5 wt %, pH of 6, and adsorption time of 4 h. The adsorption behavior of the films was agreed with the Freundlich model. The adsorption equation of metal ions could be described while using a pseudo-second order model. Based on the Langmuir model, the maximum adsorption capacities of Cu(II) and Pb(II) ions were estimated to be 484.06 and 323.49 mg/g, respectively. The Cu(II) and Pb(II) ions adsorption efficiencies of the films after 4 adsorption-desorption cycles were 90.58% and 90.21%, respectively. This study may provide a feasible approach for the application of functional CNC/CS/PVA nanofibrous films in the treatment of water.

14.
Materials (Basel) ; 10(5)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28772816

ABSTRACT

Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles' surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties.

15.
Materials (Basel) ; 10(7)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28773150

ABSTRACT

The effects of alkaline copper quaternary (ACQ) and zinc borate (ZB) on the resistance of corn stalk fiber (CSF)-reinforced high-density polyethylene (HDPE) composites to biodegradation were examined. Both biocides could inhibit termites, mold fungi, and wood-decay fungi, even at high CSF formulations (i.e., 60%). Additionally, ACQ enhanced the resistance of the composite materials to certain biotic stresses better than ZB. The CSF/HDPE composites treated with ACQ at the 3.0% level exhibited a superior performance against termites, white rot fungi, and brown rot fungi. ACQ treatment at the 1% level was optimal for inhibiting soft rot fungi. Furthermore, mold growth was not observed on ACQ-treated CSF/HDPE samples. The untreated CSF/HDPE composites were more susceptible to mold infections and decay than the untreated poplar/HDPE composites, likely because of an incomplete removal of the pith. The chemical features of the corn stalk may also have influenced these differences, but this possibility will need to be explored in future investigations. Furthermore, the CSF component of CSF/HDPE composites is highly susceptible to fungal attacks, with the soft rot fungus inducing the largest mass losses, followed by the white rot fungus, and then the brown rot fungus.

16.
Materials (Basel) ; 9(10)2016 Oct 18.
Article in English | MEDLINE | ID: mdl-28773963

ABSTRACT

The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

17.
Brain Res ; 1495: 11-7, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23246926

ABSTRACT

Myelin sheath, either in white matter or in other regions of brain, is vulnerable to ischemia. The specific events involved in the progression of ischemia in white matter have not yet been elucidated. The aim of this study was to determine histopathological alterations in cerebral white matter and levels of myelin basic protein (MBP) in ischemia-injured brain tissue during the acute and subacute phases of central nervous injury following whole-brain ischemia. The whole cerebral ischemia model (four-vessel occlusion (4-VO)) was established in adult Sprague-Dawley rats and MBP gene expression and protein levels in the brain tissue were measured using reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at 2 days, 4 days, 7 days, 14 days, and 28 days following ischemia. Demyelination was determined by Luxol fast blue myelin staining, routine histopathological staining, and electron microscopy in injured brain tissue. Results showed that edema, vascular dilation, focal necrosis, demyelination, adjacent reactive gliosis and inflammation occurred 7 days after ischemia in HE staining and recovered to control levels at 28 days. The absence of Luxol fast blue staining and vacuolation was clearly visible at 7 days, 14 days, and 28 days. Semiquantitative analysis showed that the transparency of myelin had decreased significantly by 7 days, 14 days, and 28 days. Demyelination and ultrastructual changes were detected 7 days after ischemia. The relative levels of MBP mRNA decreased 2 days after ischemia and this trend continued throughout the remaining four points in time. The MBP levels measured using ELISA also decreased significantly at 2 days and 4 days, but they recovered by 7 days and returned to control levels by 14 days. These results suggest that the impact of ischemia on cerebral white matter is time-sensitive and that different effects may follow different courses over time.


Subject(s)
Brain Ischemia/pathology , Myelin Basic Protein/biosynthesis , Myelin Sheath/ultrastructure , Animals , Brain Ischemia/metabolism , Corpus Callosum/pathology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Microscopy, Electron, Transmission , Myelin Sheath/metabolism , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...