Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Article in English | MEDLINE | ID: mdl-38954823

ABSTRACT

Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of pro-fibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I, but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMC). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends towards normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by up-regulating pro-fibrotic mediators i.e. CTGF, may play a critical role in fibrosis in CD.

3.
Nutrients ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337648

ABSTRACT

Exclusive enteral nutrition (EEN) is an established dietary treatment for Crohn's disease (CD) by alleviating inflammation and inducing remission. However, the mechanisms of action of EEN are incompletely understood. As CD is associated with gut microbiome dysbiosis, we investigated the effect of EEN on the microbiome in a rat model of CD-like colitis. The rat model of CD-like colitis was established by an intracolonic instillation of TNBS at 65 mg/kg in 250 µL of 40% ethanol. Sham control rats were instilled with saline. Rats were fed ad libitum with either regular pellet food or EEN treatment with a clear liquid diet (Ensure). Rats were euthanized at 7 days. Fecal pellets were collected from the distal colon for 16S rRNA sequencing analysis of gut microbiota. In addition, colon tissues were taken for histological and molecular analyses in all the groups of rats. EEN administration to TNBS-induced CD rats significantly improved the body weight change, inflammation scores, and disease activity index. The mRNA expression of IL-17A and interferon-γ was significantly increased in the colonic tissue in TNBS rats when fed with regular food. However, EEN treatment significantly attenuated the increase in IL-17A and interferon-γ in TNBS rats. Our 16S rRNA sequencing analysis found that gut microbiota diversity and compositions were significantly altered in TNBS rats, compared to controls. However, EEN treatment improved alpha diversity and increased certain beneficial bacteria such as Lactobacillus and Dubosiella and decreased bacteria such as Bacteroides and Enterorhabdus in CD-like rats, compared to CD-like rats with the regular pellet diet. In conclusion, EEN treatment increases the diversity of gut microbiota and the composition of certain beneficial bacteria. These effects may contribute to the reduced inflammation by EEN in the rat model of CD-like colitis.


Subject(s)
Colitis , Crohn Disease , Gastrointestinal Microbiome , Rats , Animals , Crohn Disease/microbiology , Enteral Nutrition , RNA, Ribosomal, 16S/genetics , Interleukin-17 , Interferon-gamma , Colitis/chemically induced , Colitis/therapy , Bacteria , Inflammation/therapy , Remission Induction
4.
Inflamm Bowel Dis ; 30(3): 429-440, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37536273

ABSTRACT

BACKGROUND AND AIMS: Exclusive enteral nutrition (EEN) with a liquid diet is the only established dietary treatment for Crohn's' disease (CD). However, the mechanism of action of EEN in CD is unclear. T helper 17 (Th17) immune response plays a critical role in CD. We hypothesized that EEN alleviates Th17 response by eliminating mechanical stress-induced expression of Th17-polarizing cytokines. METHODS: A rat model of Crohn's-like colitis was established by intracolonic instillation of TNBS (65 mg/kg in 250 µL of 40% ethanol). Control rats were treated with saline. We characterized immunophenotypes and molecular changes of the colon in control and colitis rats with and without EEN treatment. Th17 differentiation was determined using coculture assays. RESULTS: TNBS instillation induced transmural inflammation with stenosis in the inflammation site and a marked increase of Th17-polarizing cytokines interleukin (IL)-6 and osteopontin and the Th17 cell population in the mechanically distended preinflammation site (P-site). EEN treatment eliminated mechanical distention and the increase of IL-6, osteopontin, and Th17 response in the P-site. IL-6 and osteopontin expression was found mainly in the muscularis externa. Mechanical stretch of colonic smooth muscle cells in vitro induced a robust increase of IL-6 and osteopontin. When naïve T cells were cultured with conditioned media from the P-site tissue or stretched cells, Th17 differentiation was significantly increased. Inhibition of IL-6, but not deletion of osteopontin, blocked the increase of Th17 differentiation. CONCLUSIONS: Mechanical stress induces Th17-polarizing cytokines in the colon. EEN attenuates Th17 immune response by eliminating mechanical stress-induced IL-6 in Crohn's-like colitis.


Subject(s)
Colitis , Crohn Disease , Animals , Rats , Cytokines , Osteopontin , Interleukin-6 , Enteral Nutrition , Stress, Mechanical , Colitis/chemically induced , Inflammation/etiology , Inflammation/prevention & control , Crohn Disease/therapy
5.
Acta Pharmaceutica Sinica ; (12): 61-75, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005441

ABSTRACT

The FDA approved a total of 37 new drugs in 2022, including 22 new molecular entities and 15 new biological products. This is the year with the lowest number of new drugs approved by the FDA since 2017. Among these approved drugs, 21 new drugs belong to the "first-in-class" category, accounting for 56% of the total approved drugs, which is the highest ratio in the past 10 years. Among the drugs approved in 2022, there are 5 small molecule kinase modulators, including the tyrosine kinase 2 (TYK2) allosteric inhibitor deucravacitinib, the first oral pyruvate kinase (PK) activator mitapivat, the Janus kinase 1 (JAK1) selective inhibitor abcrocitinib, the JAK2 selective inhibitor pacritinib and the broad-spectrum fibroblast growth factor receptor (FGFR) inhibitor futibatinib. This review briefly describes the discovery background, research and development process, synthesis routes and clinical efficacy and safety of small molecule kinase modulators approved by the FDA in 2022, hoping to provide ideas and methods for further research on kinase modulators.

6.
Insect Sci ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919237

ABSTRACT

Although CRISPR/Cas9 has been widely used in insect gene editing, the need for the microinjection of preblastoderm embryos can preclude the technique being used in insect species with eggs that are small, have hard shells, and/or are difficult to collect and maintain outside of their normal environment. Such is the case with Sogatella furcifera, the white-backed planthopper (WBPH), a significant pest of Oryza sativa (rice) that oviposits inside rice stems. Egg extraction from the stem runs the risk of mechanical damage and hatching is heavily influenced by the micro-environment of the rice stem. To bypass these issues, we targeted embryos prior to oviposition via direct parental (DIPA)-CRISPR, in which Cas9 and single-guide RNAs (sgRNAs) for the WBPH eye pigment gene tryptophan 2,3-dioxygenase were injected into the hemocoel of adult females. Females at varying numbers of days posteclosion were evaluated to determine at what stage their oocyte might be most capable of taking up the gene-editing components. An evaluation of the offspring indicated that the highest G0 gene-edited efficacy (56.7%) occurred in females injected 2 d posteclosion, and that those mutations were heritably transmitted to the G1 generation. This study demonstrates the potential utility of DIPA-CRISPR for future gene-editing studies in non-model insect species and can facilitate the development of novel pest management applications.

8.
Front Physiol ; 14: 1215900, 2023.
Article in English | MEDLINE | ID: mdl-37520831

ABSTRACT

Background and Aims: Gut smooth muscle dysfunctions contribute to symptoms such as abdominal cramping, diarrhea, and constipation in inflammatory bowel disease (IBD). The mechanisms for muscle dysfunctions are incompletely understood. We tested the hypothesis that mechanical stress plays a role in muscle dysfunction in a rat model of Crohn's-like colitis where inflammatory stenosis leads to mechanical distention in the pre-inflammation site. Methods: Crohn's-like colitis was induced by intracolonic instillation of TNBS (65 mg/kg) in Sprague-Dawley rats. Control rats were instilled with saline. The rats were fed with either regular solid food or exclusively liquid diet. Rats were euthanized by day 7. Results: When rats were fed with solid food, TNBS treatment induced localized transmural inflammation with stenosis in the instillation site and marked distention with no inflammation in the pre-inflammation site of the colon. Smooth muscle contractility was suppressed, and expression of cyclo-oxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2) were increased not only in the inflammation site but also in the pre-inflammation site. Liquid diet treatment, mimicking exclusive enteral nutrition, completely released mechanical distention, eliminated COX-2 expression and PGE2 production, and improved smooth muscle contractility especially in the pre-inflammation site. When rats were administered with COX-2 inhibitor NS-398 (5 mg/kg, i. p. daily), smooth muscle contractility was restored in the pre-inflammation site and significantly improved in the inflammation site. Conclusion: Colonic smooth muscle contractility is significantly impaired in stenotic Crohn's-like colitis rats not only in the inflammation site, but in the distended pre-inflammation site. Mechanical stress-induced expression of COX-2 plays a critical role in smooth muscle dysfunction in the pre-inflammation site in Crohn's-like colitis rats.

9.
Viruses ; 15(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37376676

ABSTRACT

Dengue virus (DENV) is the cause of dengue fever, infecting 390 million people worldwide per year. It is transmitted to humans through the bites of mosquitoes and could potentially develop severe symptoms. In spite of the rising social and economic impact inflicted by the disease on the global population, a conspicuous lack of efficacious therapeutics against DENV still persists. In this study, catechin, a natural polyphenol compound, was evaluated as a DENV infection inhibitor in vitro. Through time-course studies, catechin was shown to inhibit a post-entry stage of the DENV replication cycle. Further investigation revealed its role in affecting viral protein translation. Catechin inhibited the replication of all four DENV serotypes and chikungunya virus (CHIKV). Together, these results demonstrate the ability of catechin to inhibit DENV replication, hinting at its potential to be used as a starting scaffold for further development of antivirals against DENV infection.


Subject(s)
Catechin , Dengue Virus , Dengue , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catechin/pharmacology , Catechin/therapeutic use , Virus Replication
10.
Nutrients ; 15(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242159

ABSTRACT

Background and objective: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial role in regulating immune function, epithelial barrier function, and intestinal homeostasis. In this review, we aim to present an overview of butyrate synthesis and metabolism and the mechanism of action of butyrate in maintaining intestinal homeostasis and to discuss the therapeutic implications of butyrate in IBD. Methods: We searched the literature up to March 2023 through PubMed, Web of Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn's disease, and ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic implications of butyrate. Results: Research in the last two decades has shown the beneficial effects of butyrate on gut immune function and epithelial barrier function. Most of the preclinical and clinical studies have shown the positive effect of butyrate oral supplements in reducing inflammation and maintaining remission in colitis animal models and IBD patients. However, butyrate enema showed mixed effects. Butyrogenic diets, including germinated barley foodstuff and oat bran, are found to increase fecal butyrate concentrations and reduce the disease activity index in both animal models and IBD patients. Conclusions: The current literature suggests that butyrate is a potential add-on therapy to reduce inflammation and maintain IBD remission. Further clinical studies are needed to determine if butyrate administration alone is an effective therapeutic treatment for IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Butyrates/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammation
11.
Insect Sci ; 30(6): 1552-1564, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37202920

ABSTRACT

The discovery of the clustered regularly interspaced short palindromic repeat (CRISPR) system has driven gene manipulation technology to a new era with applications reported in organisms that span the tree of life. The utility of CRISPR-mediated editing was further expanded to mRNA following identification of the RNA-targeting Cas13 family of smaller endonuclease proteins. Application of this family to insect research, however, has been more limited. In this study, the smallest Cas13 family member, Cas13d, and guide RNAs (gRNAs) were complexed with a versatile nanomaterial (star polycation, SPc) to generate a proof-of-concept RNA-editing platform capable of disrupting mRNA expression of the eye pigmentation gene tryptophan 2,3-dioxygenase (SfTO) in white-backed planthoppers (WBPHs). The resulting red-eye phenotype was present in 19.76% (with SPc) and 22.99% (without SPc) of the treatment groups and was comparable to the red-eye phenotype generated following conventional RNA interference knockdown (22.22%). Furthermore, the Cas13/gRNA phenotype manifested more quickly than RNA interference. Consistent with the expected Cas13d mechanism, SfTO transcript levels were significantly reduced. Taken together, the results indicate that the SPc-CRISPR-Cas13d/gRNA complex negatively impacted expression of the target gene. These findings confirm the utility of this novel mRNA disruption system in insects and lay the foundation for further development of these tools in the implementation of green agricultural pest management tactics.


Subject(s)
Hemiptera , Nanoparticles , Animals , CRISPR-Cas Systems , RNA, Messenger/genetics , RNA, Guide, CRISPR-Cas Systems , Hemiptera/genetics , RNA/genetics , Insecta/genetics , Pigmentation/genetics
12.
Pest Manag Sci ; 79(8): 2869-2881, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36942746

ABSTRACT

BACKGROUND: The white-backed planthopper (WBPH, Sogatella furcifera) is a major rice pest that exhibits condition dependent wing dimorphisms - a macropterous (long wing) form and a brachypterous (short wing) form. Although, the gene cascade that regulates wing development and dimorphic differentiation has been largely defined, the utility of these genes as targets for pest control has yet to be fully explored. RESULTS: Five genes typically associated with the developmental signaling network, armadillo (arm), apterous A (apA), scalloped (sd), dachs (d), and yorkie (yki) were identified from the WBPH genome and their roles in wing development assessed following RNA interference (RNAi)-mediated knockdown. At 5 days-post injection, transcript levels for all five targets were substantially decreased compared with the dsGFP control group. Among the treatment groups, those injected with dsSfarm had the most pronounced effects on transcript reduction, mortality (95 ± 3%), and incidence (45 ± 3%) of wing deformities, whereas those injected with dsSfyki had the lowest incidence (6.7 ± 4%). To assess the utility of topical RNAi for Sfarm, we used a spray-based approach that complexed a large-scale, bacteria-based double-stranded RNA (dsRNA) expression pipeline with star polycation (SPc) nanoparticles. Rice seedlings infested with third and fourth instar nymphs were sprayed with SPc-dsRNA formulations and RNAi phenotypic effects were assessed over time. At 2 days post-spray, Sfarm transcript levels decreased by 86 ± 9.5% compared with dsGFP groups, and the subsequent incidences of mortality and wing defects were elevated in the treatment group. CONCLUSIONS: This study characterized five genes in the WBPH developmental signaling cascade, assessed their impact on survival and wing development via RNAi, and developed a nanoparticle-dsRNA spray approach for potential field control of WBPH. © 2023 Society of Chemical Industry.


Subject(s)
Hemiptera , Oryza , Animals , Hemiptera/physiology , Oryza/genetics , Wings, Animal , RNA Interference , Pest Control
13.
J Agric Food Chem ; 71(12): 4789-4801, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36920281

ABSTRACT

Insects have evolved an extremely sensitive olfactory system that is essential for a series of physiological and behavioral activities. Some carboxylesterases (CCEs) comprise a major subfamily of odorant-degrading enzymes (ODEs) playing a crucial role in odorant signal inactivation to maintain the odorant receptor sensitivity. In this study, 93 CCEs were annotated in the genome of the German cockroach Blattella germanica, a serious urban pest. Phylogenetic and digital tissue expression pattern analyses identified two antenna-enriched CCEs, BgerCCE021e3 and BgerCCE021d1, as candidate ODEs. RNA interference (RNAi)-mediated knockdown of BgerCCE021e3 and BgerCCE021d1 resulted in partial anosmia with experimental insects exhibiting reduced attraction to ester volatile resources and slower olfactory responses than controls. Furthermore, enzymatic conversion of geranyl acetate by crude male antennal extracts from BgerCCE021e3 and BgerCCE021d1 RNAi insects was also significantly reduced. Our results provide evidence for CCE function in German cockroach olfaction and provide a basis for further exploring behavioral inhibitors that target olfactory-related CCEs.


Subject(s)
Blattellidae , Animals , Male , Blattellidae/genetics , Carboxylic Ester Hydrolases/genetics , Smell , Esters , Phylogeny , Allergens
14.
Environ Res ; 223: 115482, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36775089

ABSTRACT

The modification of dissolved organic matter (DOM) degradation by plant carbon inputs represents a critical biogeochemical process that controls carbon dynamics. However, the priming effects (PEs) different plant tissues induce on the degradation of DOM pools with different stabilities remain unknown. In this study, PEs, induced by different tissue leachates of Phragmites australis, were evaluated via changes in DOM components and properties of both fresh and tidal water (with different stabilities). The results showed that DOM derived from different plant tissue leachates differed in composition and bioavailability. Inputs of tissue leachates induced PEs with different intensities and directions (negative or positive) on DOM degradation of fresh and tidal water. In fresh water, the PEs of leaf and root leachates were significantly higher than those of stem and rhizome leachates. The PE direction changed for DOM degradation between fresh and tidal water. The addition of leaf and root leachates tended to induce positive PEs on DOM degradation of fresh water, while resulting in negative PEs on DOM degradation of tidal water. Negative PEs for tidal water DOM may be due to preferential utilization of microbes, high salinity, and/or the promotion of exogenous DOM production from plant tissues. The results indicate that intensity and direction of PEs induced by plant leachates depend on both leachate type and water stability. The findings highlight the necessity to examine the nature of exogenous and native DOM when interpreting the interactive processes that regulate DOM degradation.


Subject(s)
Dissolved Organic Matter , Water , Fresh Water , Plants , Carbon , Spectrometry, Fluorescence
15.
Int J Biol Macromol ; 230: 123123, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36603718

ABSTRACT

As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.


Subject(s)
Hemiptera , Oryza , Animals , Melanins , Tyrosine , Hemiptera/genetics , Oryza/genetics
16.
Pest Manag Sci ; 79(3): 1048-1061, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36325939

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR), zinc finger homeodomain-2 (zfh-2), Abdominal-A (Abd-A), and Abdominal-B (Abd-B) regulate the growth and development of the insect abdomen. However, their potential roles in pest control have not been fully assessed. The development of insecticide resistance to multiple chemistries in the white-backed planthopper (WBPH), a major pest of rice, has prompted interest in novel pest control approaches that are ecologically friendly. Although pest management approaches based on double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) have potential, their susceptibility to degradation limits large-scale field applications. These limitations, however, can be overcome with nanoparticle-dsRNA complexes that have greater environmental stability and improved cellular uptake. RESULTS: In this study, at 5 days post-injection, transcripts for the four gene targets were reduced relative to controls and all of the experimental groups exhibited significant phenotypic defects and increased mortality. To evaluate the potential of these gene targets for field applications, a nanocarrier-dsRNA spray delivery system was assessed for RNAi efficacy. At 11 days post-spray, significant phenotypic defects and increased mortality were observed in all experimental groups. CONCLUSION: Taken together, the results confirm the suitability of the target genes (SfEGFR, Sfzfh-2, SfAbd-A, and SfAbd-B) for pest management and demonstrate the efficacy of the nanocarrier spray system for inducing RNAi-mediated knockdown. As such, the study lays the foundation for the further development and optimization of this technology for large-scale field applications. © 2022 Society of Chemical Industry.


Subject(s)
Hemiptera , Nanoparticles , Animals , RNA, Double-Stranded/genetics , Insecta/genetics , RNA Interference , Hemiptera/genetics , Pest Control
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981836

ABSTRACT

OBJECTIVE@#To analyze the clinical features and genotype of a child with Schmid type metaphyseal chondrodysplasia.@*METHODS@#Clinical data of the child and her parents was collected. The child was subjected to high-throughput sequencing, and candidate variant was verified by Sanger sequencing of her family members.@*RESULTS@#Whole exome sequencing revealed that the child has harbored a heterozygous c.1772G>A (p.C591Y) variant of the COL10A1 gene, which was not found in either of her parents. The variant was not found in the HGMD and ClinVar databases, and was rated as likely pathogenic based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).@*CONCLUSION@#The heterozygous c.1772G>A (p.C591Y) variant of the COL10A1 gene probably underlay the Schmid type metaphyseal chondrodysplasia in this child. Genetic testing has facilitated the diagnosis and provided a basis for genetic counselling and prenatal diagnosis for this family. Above finding has also enriched the mutational spectrum of the COL10A1 gene.


Subject(s)
Humans , Child , Female , Mutation , Osteochondrodysplasias/diagnosis , Heterozygote , Molecular Biology
18.
Chinese Journal of Neurology ; (12): 305-312, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-994832

ABSTRACT

Objective:To analyze the clinical characteristics and genetic variation of 2 children with developmental and epileptic encephalopathy 8 (DEE8).Methods:Whole-exome sequencing (WES) was performed to determine the potential variants in the probands. Candidate variants identified by WES were validated by Sanger sequencing and quantitative real-time polymerase chain reaction. X chromosome inactivation (XCI) detection was performed in the proband 1′s mother and proband 2 to detect the allelic expression difference of ARHGEF9. Results:Both of the cases showed global developmental delay. Proband 1 presented with delayed motor and speech development, intellectual disability, and seizures. Electroencephalography of proband 1 showed slow background activity, with spikes, spike and waves in bilateral frontal and midline regions during sleep. While proband 2 showed delay in acquisition of language, motor skills, and cognition, but no seizures. It was identified that proband 1 carried a novel maternally derived heterozygous splicing variant (c.925-2A>T) in ARHGEF9 by WES, which was verified in Sanger sequencing. The XCI in proband 1′s mother was observed, and the expression ratio of mutant ARHGEF9 and wild-type was 0∶100%. A novel exon 3-10 heterozygous deletion of ARHGEF9 was identified in proband 2, and this variant was not found in his unaffected parents. Conclusions:DEE8 disorders are relatively rare. Most of the patients have varying degrees of neurodevelopmental phenotype, but epilepsy is not a specific clinical manifestation. ARHGEF9 gene deletion and splicing variation may be the genetic cause of the 2 probands, and above findings have enriched the spectrum of variation and phenotype of DEE8.

19.
Chinese Journal of Geriatrics ; (12): 676-682, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-993873

ABSTRACT

Objective:To investigate the expression of circ_0063865 in esophageal squamous cell carcinoma(ESCC)tissues and cells and its effect on the biological properties of the cells.Methods:The loop structure and stability of circ_0063865 were identified by Sanger sequencing, back-to-back primer validation and the ribonuclease R(Rnase R)tolerance assay.The expression of circ_0063865 was detected by RNA fluorescence in situ hybridization in an ESCC tissue microarray and its clinical relevance was analyzed.The expression levels of circ_0063865 in a normal esophageal epithelial cell line and ESCC cell lines were measured by real-time quantitative polymerase chain reaction(RT-qPCR). Cell counting Kit-8, the colony formation assay, the scratch assay, the transwell invasion assay and flow cytometry were used to detect the effects of circ_0063865 on cell proliferation, migration, invasion abilities and apoptosis, respectively.Results:The loop formation of circ_0063865 was verified by Sanger sequencing, back-to-back primer and Rnase R tolerance assays.The results of RNA fluorescence in situ hybridization showed that the mean fluorescence intensity of circ_0063865 expressed in ESCC tissues was significantly higher than in its paired paracancerous normal tissues( t=2.267, P<0.05). The expression of circ_0063865 was significantly associated with lymph node metastasis( χ2=4.356, P<0.05). The average overall survival time of patients with high circ_0063865 expression ESCC was lower than that of patients with low circ_0063865 expression ESCC.RT-qPCR results demonstrated that, compared with HEEC, circ_0063865 expression was elevated in ESCC cell lines( F=18.413, P<0.05). In addition, after circ_0063865 knockdown, the proliferation, migration and invasion abilities of KYSE-30 and KYSE-150 cells were significantly decreased, and the level of apoptosis was significantly increased(both P<0.05). Conclusions:The expression of circ_0063865 in ESCC is high, and changes in its expression are significantly correlated with lymph node metastasis.Additionally, circ_0063865 can promote the proliferation, migration and invasion of ESCC cells.

20.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010998

ABSTRACT

From the fungus Trichoderma sp., we isolated seven novel 18-residue peptaibols, neoatroviridins E-K (1-7), and six new 14-residue peptaibols, harzianins NPDG J-O (8-13). Additionally, four previously characterized 18-residue peptaibols neoatroviridins A-D (14-17) were also identified. The structural configurations of the newly identified peptaibols (1-13) were determined by comprehensive nuclear magnetic resonance (NMR) and high-resolution electrospray ionization tandem mass spectrometry (HR-ESI-MS/MS) data. Their absolute configurations were further determined using Marfey's method. Notably, compounds 12 and 13 represent the first 14-residue peptaibols containing an acidic amino acid residue. In antimicrobial assessments, all 18-residue peptaibols (1-7, 14-17) exhibited moderate inhibitory activities against Staphylococcus aureus 209P, with minimum inhibitory concentration (MIC) values ranging from 8-32 μg·mL-1. Moreover, compound 9 exhibited moderate inhibitory effect on Candida albicans FIM709, with a MIC value of 16 μg·mL-1.


Subject(s)
Peptaibols/chemistry , Trichoderma/metabolism , Tandem Mass Spectrometry/methods , Anti-Infective Agents/pharmacology , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...