Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(4): 4874-4885, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33464809

ABSTRACT

This work is strategically premeditated to study the potential of a herbal medicinal product as a natural bioactive ingredient to generate nanocellulose-based antibacterial architectures. In situ fibrillation of purified cellulose was done in cinnamon extract (ciE) to obtain microfibrillated cellulose (MFC). To this MFC suspension, carboxylated cellulose nanocrystals (cCNCs) were homogeneously mixed and the viscous gel thus obtained was freeze-dried to obtain lightweight and flexible composite aerogel architectures impregnated with ciE, namely, ciMFC/cCNCs. At an optimal concentration of 0.3 wt % cCNCs (i.e., for ciMFC/cCNCs_0.3), an improvement of around 106% in compressive strength and 175% increment in modulus were achieved as compared to pristine MFC architecture. The efficient loading and interaction of ciE components, specifically cinnamaldehyde, with MFC and cCNCs resulted in developing competent antibacterial surfaces with dense and uniform microstructures. Excellent and long-term antimicrobial activity of the optimized architectures (ciMFC/cCNCs_0.3) was confirmed through various antibacterial assays like the zone inhibition method, bacterial growth observation at OD600, minimum inhibitory concentration (MIC, here 1 mg/mL), minimum bactericidal concentration (MBC, here 3-5 mg/mL), and Live/Dead BacLight viability tests. The changes in the bacterial morphology with a disrupted membrane were further confirmed through various imaging techniques like confocal laser scanning microscopy, FESEM, AFM, and 3D digital microscopy. The dry composite architecture showed the persuasive capability of suppressing the growth of airborne bacteria, which in combination with antibacterial efficiency in the wet state is considered as an imperative aspect for a material to act as the novel biomaterial. Furthermore, these architectures demonstrated excellent antibacterial performance under real "in use" contamination prone conditions. Hence, this work provides avenues for the application of crude natural extracts in developing novel forms of advanced functional biomaterials that can be used for assorted biological/healthcare applications such as wound care and antimicrobial filtering units.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Cinnamomum aromaticum/chemistry , Nanogels/chemistry , Plant Extracts/chemistry , Acrolein/chemistry , Acrolein/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Adhesion/drug effects , Bacterial Infections/prevention & control , Humans , Microbial Sensitivity Tests , Plant Extracts/pharmacology
2.
Int J Biol Macromol ; 77: 250-9, 2015.
Article in English | MEDLINE | ID: mdl-25841375

ABSTRACT

A better understanding of the inhomogeneous molecular structure of lignin from bamboo is a prerequisite for promoting the "biorefinery" technologies of the bamboo feedstock. A mild and successive method for fractionating native lignin from bamboo species was proposed in the present study. The molecular structure and structural inhomogeneity of the isolated lignin polymers were comprehensively investigated by elemental analysis, carbohydrate analysis, state-of-the-art NMR and analytical pyrolysis techniques (quantitative (13)C NMR, (13)C-DEPT 135 NMR, 2D-HSQC NMR, (31)P NMR, and pyrolysis-GC-MS). The results showed that the proposed method is effective for extracting lignin from bamboo. NMR results showed that syringyl (S) was the predominant unit in bamboo lignin over guaiacyl (G) and p-hydroxyphenyl (H) units. In addition, the lignin was associated with p-coumarates and ferulates via ester and ether bonds, respectively. Moreover, various substructures, such as ß-O-4, ß-ß, ß-5, ß-1, and α,ß-diaryl ether linkages, were identified and quantified by NMR techniques. Based on the results obtained, a proposed schematic diagram of structural heterogeneity of the lignin polymers extracted from the bamboo is presented. In short, well-defined inhomogeneous structures of native lignin from bamboo will facilitate further applications of bamboo in current biorefineries.


Subject(s)
Lignin/chemistry , Poaceae/chemistry , Biomass , Molecular Weight
3.
Materials (Basel) ; 8(2): 586-599, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-28787959

ABSTRACT

Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5-30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.

4.
J Agric Food Chem ; 61(3): 635-45, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23265413

ABSTRACT

The use of ionic liquid (IL) in biomass pretreatment has received considerable attention recently because of its effectiveness in decreasing biomass recalcitrance to subsequent enzymatic hydrolysis. To understand the structural changes of lignin after pretreatment and enzymatic hydrolysis process, ionic liquid lignin (ILL) and subsequent residual lignin (RL) were sequentially isolated from ball-milled birch wood. The quantitative structural features of ILL and RL were compared with the corresponding cellulolytic enzyme lignin (CEL) by nondestructive techniques (e.g., FTIR, GPC, quantitative (13)C, 2D and (31)P NMR). The IL pretreatment caused structural modifications of lignin (cleavage of ß-O-4 ether linkages and formation of condensed structures). In addition, lignin fragments with lower S/G ratios were initially extracted, whereas the subsequently extracted lignin is rich in syringyl unit. Moreover, the maximum decomposition temperature (T(M)) was increased in the order ILL < RL < CEL, which was related to the corresponding ß-O-4 ether linkage content and molecular weight (M(w)). On the basis of the results observed, a possible separation mechanism of IL lignin was proposed.


Subject(s)
Betula/chemistry , Ionic Liquids/chemistry , Lignin/chemistry , Ethers/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Molecular Weight , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Wood/chemistry
5.
Materials (Basel) ; 6(1): 359-391, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-28809313

ABSTRACT

The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (insitu), as well as their applications are reviewed.

6.
Carbohydr Res ; 352: 159-65, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22405746

ABSTRACT

Fractionation of hemicelluloses from delignified Pinus yunnanensis was carried out with KOH/H(3)BO(3) solution followed by graded precipitation in 15%, 60%, and 90% (v/v) ethanol solutions, respectively. Chemical compositions, physicochemical properties, and structures of the precipitated hemicellulosic fractions were elucidated by a combination of sugar analysis, GPC, FT-IR, and (1)H, (13)C and 2D HSQC NMR spectroscopy. Sugar analysis showed that the hemicellulosic fraction precipitated by 15% ethanol solution (H(1)) had a predominance of xylose (58.52%), while mannose was the major sugar component in the hemicellulosic fractions precipitated by 60% (H(2)) and 90% (H(3)) ethanol solutions. GPC results revealed that the hemicelluloses precipitated by low concentration of ethanol solutions had higher weight-average molecular mass (50,090-79,840 g/mol) than those obtained in the high concentration of ethanol solutions (16,500 g/mol). The fraction precipitated by 60% ethanol solution (H(2)) was composed of D-galactose, D-glucose and D-mannose in a ratio of approximately 1:1:3.5. Structural determination indicated that the hemicellulosic fraction (H(2)) had a main structure of (1→4)-linked ß-glucomannans backbone with (1→6)-linked α-D-galactose as a side chain attached to C-6 of mannose units. In addition, this fraction also contained minor amounts of xylans.


Subject(s)
Chemical Fractionation/methods , Chemical Precipitation , Ethanol/chemistry , Pinus/chemistry , Polysaccharides/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight , Monosaccharides/analysis , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...