Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 15(5): 8846-62, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24857916

ABSTRACT

Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.


Subject(s)
DNA, Plant/analysis , Gene Dosage , Real-Time Polymerase Chain Reaction , Saccharum/genetics , DNA, Plant/standards , Genome, Plant , Plant Leaves/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Real-Time Polymerase Chain Reaction/standards , Species Specificity , Transgenes
2.
ScientificWorldJournal ; 2013: 942682, 2013.
Article in English | MEDLINE | ID: mdl-24228020

ABSTRACT

Sporisorium scitamineum is a fungal smut pathogen epidemic in sugarcane producing areas. Early detection and proper identification of the smut are an essential requirement in its management practice. In this study, we developed a TaqMan real-time PCR assay using specific primers (bEQ-F/bEQ-R) and a TaqMan probe (bEQ-P) which were designed based on the bE (b East mating type) gene (Genbank Accession no. U61290.1). This method was more sensitive (a detection limit of 10 ag pbE DNA and 0.8 ng sugarcane genomic DNA) than that of conventional PCR (10 fg and 100 ng, resp.). Reliability was demonstrated through the positive detection of samples collected from artificially inoculated sugarcane plantlets (FN40). This assay was capable of detecting the smut pathogen at the initial stage (12 h) of infection and suitable for inspection of sugarcane pathogen-free seed cane and seedlings. Furthermore, quantification of pathogen was verified in pathogen-challenged buds in different sugarcane genotypes, which suggested its feasibility for evaluation of smut resistance in different sugarcane genotypes. Taken together, this novel assay can be used as a diagnostic tool for sensitive, accurate, fast, and quantitative detection of the smut pathogen especially for asymptomatic seed cane or plants and evaluation of smut resistance of sugarcane genotypes.


Subject(s)
Basidiomycota/genetics , Real-Time Polymerase Chain Reaction , Saccharum/microbiology , Basidiomycota/isolation & purification , Genes, Fungal , Genetic Predisposition to Disease , Genotype , Plant Diseases/genetics , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods , Saccharum/genetics , Sensitivity and Specificity
3.
Plant Cell Rep ; 32(10): 1503-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23842883

ABSTRACT

KEY MESSAGE: Two ß-1,3-glucanase genes from sugarcane were cloned and characterized. They were all located in apoplast and involves in different expression patterns in biotic and abiotic stress. Smut caused by Sporisorium scitamineum is a serious disease in the sugarcane industry. ß-1,3-Glucanase, a typical pathogenesis-related protein, has been shown to express during plant-pathogen interaction and involves in sugarcane defense response. In this study, ß-1,3-glucanase enzyme activity in the resistant variety increased faster and lasted longer than that of the susceptible one when inoculated with S. scitamineum, along with a positive correlation between the activity of the ß-1,3-glucanase and smut resistance. Furthermore, two ß-1,3-glucanase genes from S. scitamineum infected sugarcane, ScGluA1 (GenBank Accession No. KC848050) and ScGluD1 (GenBank Accession No. KC848051) were cloned and characterized. Phylogenetic analysis suggested that ScGluA1 and ScGluD1 clustered within subfamily A and subfamily D, respectively. Subcellular localization analysis demonstrated that both gene products were targeted to apoplast. Escherichia coli Rosetta (DE3) cells expressing ScGluA1 and ScGluD1 showed varying degrees of tolerance to NaCl, CdCl2, PEG, CuCl2 and ZnSO4. Q-PCR analysis showed up-regulation of ScGluA1 and slight down-regulation of ScGluD1 in response to S. scitamineum infection. It suggested that ScGluA1 may be involved in the defense reaction of the sugarcane to the smut, while it is likely that ScGluD1 was inhibited. The gene expression patterns of ScGluA1 and ScGluD1, in response to abiotic stresses, were similar to sugarcane response against smut infection. Together, ß-1,3-glucanase may function in sugarcane defense mechanism for S. scitamineum. The positive responses of ScGluA1 and the negative responses of ScGluD1 to biotic and abiotic stresses indicate they play different roles in interaction between sugarcane and biotic or abiotic stresses.


Subject(s)
Glucan 1,3-beta-Glucosidase/metabolism , Plant Diseases/genetics , Plant Proteins/metabolism , Saccharum/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Glucan 1,3-beta-Glucosidase/genetics , Molecular Sequence Data , Plant Diseases/microbiology , Plant Proteins/genetics , Saccharum/enzymology , Stress, Physiological , Ustilaginales
SELECTION OF CITATIONS
SEARCH DETAIL
...