Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
RSC Adv ; 13(31): 21746-21753, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37476044

ABSTRACT

The intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) processes of coumarin 307 (C307) in different solvents were investigated by performing steady-state/time-resolved transient absorption spectroscopic and steady-state photoluminescence spectroscopic characterizations in combination with time-dependent density functional theoretical calculation (TDDFT). The study unveiled the remarkable influence of solvent polarity and the strength of intermolecular hydrogen bonds formed between the solutes and solvents on the relaxation dynamics of the electronic excited state. Significantly, the emergence of the TICT state was observed in polar solvents, specifically dimethylformamide (DMF) and dimethyl sulfoxidemethanol (DMSO), owing to their inherent polarity as well as the enhanced intermolecular hydrogen bonding interactions. Interestingly, even in a weak polar solvent such as methanol (MeOH), the TICT state was also observed due to the intensified hydrogen bonding effects. Conversely, nonpolar solvents, exemplified by 1,4-dioxane (Diox), resulted in the stabilization of the ICT state due to the augmented N-H⋯O hydrogen bonding interactions. The experimental findings were corroborated by the computational calculations, thus ensuring the reliability of the conclusions drawn. Furthermore, schematic diagrams were presented to illustrate the mechanisms underlying the excited-state deactivation. Overall, this investigation contributes valuable mechanistic insights and provides a comprehensive understanding of the photochemical and photophysical properties exhibited by coumarin dyes.

2.
Front Surg ; 10: 1091062, 2023.
Article in English | MEDLINE | ID: mdl-37292489

ABSTRACT

Objective: To analyze the safety and efficacy of regular aspirin use after combined cerebral revascularization in patients with ischemic moyamoya disease. Methods: From December 2020 to October 2021, a total of 326 patients diagnosed with ischemic moyamoya disease by global cerebral angiography and undergoing first-time combined cerebral revascularization at the Moyamoya Disease Diagnosis and Treatment Research Center of our hospital were selected. Combined cerebral revascularization: superficial temporal artery-middle cerebral artery (STA-MCA) +encephalo-duro-myo-synangiosis (EDMS).Patients were screened by 2 senior physicians according to established inclusion/exclusion criteria. Patients were divided into aspirin and non-aspirin groups based on whether they received regular oral aspirin after surgery. A total of 133 patients were enrolled in the aspirin group. A total of 71 patients (204 cases) were enrolled in the non-aspirin group. Related data were collected before and 1 year after surgery and statistically analyzed to assess the prognosis of both groups. Results: In the two groups, the mRS Score was significantly different after one year (P = 0.023). TIA occurred in 26 patients (19.5%) in the aspirin group and 27 patients (38.0%) in the non-aspirin group within one year after surgery, and the difference between the two groups was statistically significant (P = 0.004). There was no significant difference in cerebral perfusion stage, the improvement rate of cerebral perfusion, Matsushima grading, bypass patency, and other complications within one year after the operation (P > 0.05). Conclusions: In patients with ischemic moyamoya disease who underwent combined cerebral revascularization, postoperative administration of aspirin can reduce the incidence of TIA without increasing the risk of bleeding, but it can not significantly improve the cerebral perfusion of the operation side, Matsushima grading, and bypass patency.

3.
Front Surg ; 10: 1074438, 2023.
Article in English | MEDLINE | ID: mdl-36860943

ABSTRACT

Objectives: We aimed to explore the results of OA-PICA-protected bypass grafting in patients with severe stenosis of the vertebral artery combined with PICA. Methods: Three patients with vertebral artery stenosis involving the posterior inferior cerebellar artery, treated by the Department of Neurosurgery of Henan Provincial People's Hospital from January 2018 to December 2021, were retrospectively analyzed. All the patients underwent Occipital Artery-Posterior Inferior Cerebellar Artery (OA-PICA) bypass surgery followed by elective vertebral artery stenting. Intraoperative indocyanine green fluorescence angiography (ICGA) showed patency of the bridge-vessel anastomosis. Postoperatively, the ANSYS software was used to assess the flow pressure changes and vascular shear in combination with the reviewed DSA angiogram. CTA or DSA was reviewed 1-2 years postoperatively, and the prognosis was evaluated by the modified Rankin Scale (mRS) one year postoperatively. Results: OA-PICA bypass surgery was completed in all patients, with intraoperative ICGA showing a patent bridge anastomosis, followed by stenting of the vertebral artery, and a review of the DSA angiogram. We also employed ANSYS software evaluation of the bypass vessel, which showed stable pressure and low turnover angle, suggesting a low rate of long-term occlusion of the vessel. All patients had no procedure-related complications during their hospitalization, and were followed up for a mean of 24 months postoperatively, with a good prognosis (mRS score of 1) at 1 year postoperatively. Conclusion: OA-PICA-protected bypass grafting is an effective treatment for patients with severe stenosis of the vertebral artery combined with PICA.

4.
Free Radic Biol Med ; 202: 46-61, 2023 06.
Article in English | MEDLINE | ID: mdl-36990300

ABSTRACT

Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.


Subject(s)
Gastritis , NADH, NADPH Oxidoreductases , NF-kappa B , Animals , Humans , Mice , Gastritis/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-33 , Metaplasia , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Reactive Oxygen Species/metabolism , NADH, NADPH Oxidoreductases/genetics
5.
Life (Basel) ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36556371

ABSTRACT

Streptococcus suis (S. suis) is an important zoonotic pathogen. It mainly uses quorum sensing (QS) to adapt to complex and changeable environments. QS is a universal cell-to-cell communication system that has been widely studied for its physiological functions, including the regulation of bacterial adhesion, virulence, and biofilm formation. Quorum sensing inhibitors (QSIs) are highly effective at interfering with the QS system and bacteria have trouble developing resistance to them. We review the current research status of the S. suis LuxS/AI-2 QS system and QSIs. Studies showed that by inhibiting the formation of AI-2, targeting the LuxS protein, inhibiting the expression of luxs gene can control the LuxS/AI-2 QS system of S. suis. Other potential QSIs targets are summarized, which may be preventing and treating S. suis infections, including AI-2 production, transmission, LuxS protein, blockage of AI-2 binding to receptors, AI-2-mediated QS. Since antibiotics are becoming increasingly ineffective due to the emergence of resistant bacteria, including S. suis, it is thus critical to find new antibacterial drugs with different mechanisms of action. QSIs provide hope for the development of such drugs.

6.
Comput Intell Neurosci ; 2022: 7620287, 2022.
Article in English | MEDLINE | ID: mdl-36052043

ABSTRACT

Moyamoya disease is a medical condition that shows the typical characteristics like continuous and chronic thickening of the walls and the contraction of the internal carotid artery; as a result, the internal diameter of the artery gets narrowed. There are six phases of the disease ranging from I to VI (moyamoya vessels completely disappear, followed by the complete blockage of the arteries). Surgery is a commonly recommended treatment for the moyamoya disease. Our research study identifies the effect of autologous bone marrow stem cell therapy (ABMSCT) on the levels of inflammatory factors and Conexin43 (Cx43) protein in patients suffering from moyamoya. In our study, we have selected 52 moyamoya patients admitted to our hospital from 30 July 2019 to 10 February 2020. The control group (CG) was treated with superficial temporal artery to a middle cerebral artery (STA-MCA) bypass + encephalo-duro-myosinangiosis (EDMS). The experimental group (Exp. Grp) was treated with ABMSC. The cerebral vascular tissue of the patients was treated with hematoxylin-eosin (HE) staining. Immunohistochemical staining was used to identify the levels of Cx43 protein. The concentrations of vascular endothelial growth factor (VEGF), inflammatory factor interleukin-6 (IL6), interleukin-1ß (IL1ß), tumor necrosis factor (TNFα), and anti-inflammatory factor interleukin-1ß (IL1ß) were determined by enzyme-linked immunosorbent assay (ELISA). We have found that after treatment of the expression of Cx43 protein, the proportions of grade IV (7.7%), grade III (311.5%), and grade II (3.8%) patients in the Exp. Grp were lower than those in the CG. The proportion of grade I patients in the Exp. Grp (77%) was higher than that in the CG (38.5%). After treatment, the inflammatory factors IL6 (0.97 ± 0.82 pg/mL), IL1ß (8.33 ± 1.21 pg/mL), and TNFα (1.73 ± 0.71 pg/mL) in the Exp. Grp were lower than those in the CG. The anti-inflammatory factor IL1ß (15.09 ± 4.72 pg/mL) increased in the Exp. Grp compared with the CG (11.25 ± 3.48 pg/mL) post treatment. Intracranial infection, hydrocephalus, hemiplegia, and transient neurological dysfunction in the Exp. Grp were lower than those in the CG, with statistical differences (P < 0.05). Our study suggests that the treatment of autologous bone marrow stem cells (ABMSC) was beneficial to balance the inflammatory response of disorders, reduce the damage of vascular tissue in the brain, and regulate tissue repair by co-acting with various inflammatory factors as compared to traditional surgery. We conclude that the involvement of Cx43 in the occurrence and development of moyamoya. We also have found that the risk factors of intracranial infection after ABMSCT were less as compared to those after conventional surgery.


Subject(s)
Cerebral Revascularization , Moyamoya Disease , Bone Marrow/pathology , Bone Marrow/surgery , Bone Marrow Cells/pathology , Connexin 43 , Humans , Interleukin-1beta , Interleukin-6 , Moyamoya Disease/pathology , Moyamoya Disease/therapy , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
7.
J Antimicrob Chemother ; 77(12): 3275-3282, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36173390

ABSTRACT

BACKGROUND: The increased resistance of bacterial pathogens to fluoroquinolones (FQs), such as norfloxacin and ciprofloxacin, supports the need to develop new antibacterial drugs and combination therapies using conventional antibiotics. The LuxS/AI-2 quorum sensing (QS) system can regulate the complex group behaviour of Streptococcus suis and impact its susceptibility to FQs. OBJECTIVES: We investigated the combination of paeoniflorin and norfloxacin as a novel and effective strategy against FQ-resistant S. suis. METHODS: FIC, AI-2 activity assay, real-time RT-PCR and biofilm inhibition assays were performed to investigate the in vitro effect of paeoniflorin combined with norfloxacin. Mouse protection and mouse anti-infection assays were performed to investigate the in vivo effect of paeoniflorin combined with norfloxacin. RESULTS: FIC results showed that paeoniflorin and norfloxacin exert a synergistic bactericidal effect. Evidence was brought that paeoniflorin reduces the S. suis AI-2 activity and significantly down-regulates the transcription of the FQ efflux pump gene. In addition, paeoniflorin can inhibit biofilm formation, thereby promoting the ability of norfloxacin to kill S. suis. Finally, we showed in a mouse model that paeoniflorin in association with norfloxacin is effective to treat S. suis infections. CONCLUSIONS: This study highlighted the inhibitory potential of paeoniflorin on the LuxS/AI-2 QS system of S. suis, and provided evidence that it can inhibit the FQ efflux pump and prevent biofilm formation to cooperate with norfloxacin in the treatment of resistant S. suis-related infections.


Subject(s)
Anti-Bacterial Agents , Monoterpenes , Norfloxacin , Streptococcal Infections , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Biofilms , Fluoroquinolones/pharmacology , Glucosides/pharmacology , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Norfloxacin/pharmacology , Norfloxacin/therapeutic use , Streptococcus suis , Streptococcal Infections/drug therapy , Drug Resistance, Bacterial
8.
Article in English | MEDLINE | ID: mdl-35886209

ABSTRACT

Streptococcus suis (S. suis) can form a protective biofilm during infection and lead to prolonged disease. Oral antibiotics are often used for treatment in clinical practice, but sub-inhibitory concentration levels often exist due to low oral absorption rate, resulting in disease deterioration. The purpose of this study was to investigate the effects of Amoxicillin and Tylosin on the biofilm formation and virulence of S. suis HA9801 at sub-inhibitory concentration. We first determined that the test groups (1/4MIC Amoxicillin and Tylosin) could significantly increase the amount of biofilm formation without affecting bacterial growth. The LD50 value of the test groups was significantly higher than that of the control group in the mouse infection model. In the mouse infection model, the LD50 value of the experimental group was significantly increased, but the tissue bacterial load was significantly decreased. Further RT-PCR analysis showed that the expression levels of virulence-related genes in the experimental group were significantly reduced. Our study suggests that both Amoxicillin and Tylosin at sub-inhibitory concentrations could enhance the biofilm formation ability of S. suis HA9801 and reduce its virulence to form persistent infection.


Subject(s)
Streptococcal Infections , Streptococcus suis , Amoxicillin/pharmacology , Animals , Biofilms , Disease Models, Animal , Mice , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus suis/genetics , Tylosin/pharmacology , Virulence
9.
World J Clin Cases ; 10(14): 4617-4624, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35663064

ABSTRACT

BACKGROUND: Moyamoya disease is essentially an ischemic cerebrovascular disease. Here, we describe a case of acute recurrent cerebral infarction caused by moyamoya disease with concurrent adenomyosis which, to our knowledge, is the first in the literature. A literature review is also presented. CASE SUMMARY: A 38-year-old female presented to the Research and Treatment Center of Moyamoya Disease in our hospital with "left limb weakness" as the main symptom. She was diagnosed with acute cerebral infarction and moyamoya disease through magnetic resonance imaging and digital subtraction angiography. Prior to this, she had experienced a prolonged menstrual period of one-month duration. This was investigated and adenomyosis was diagnosed. After passing the acute cerebral infarction phase, the patient underwent surgery for adenomyosis followed by combined cerebral revascularization. During the postoperative follow-up, improvements of the perfusion imaging stage and modified Rankin Scale were observed. A review of the literature showed only 16 reported cases of gynecological diseases complicated with stroke. The clinical characteristics, pathogenesis, therapeutic effects, and long-term prognosis of these cases have been studied and discussed. CONCLUSION: In patients with moyamoya disease, early management of gynecological-related bleeding disorders is essential to prevent the complications of cerebral events.

10.
Front Surg ; 9: 863718, 2022.
Article in English | MEDLINE | ID: mdl-35620191

ABSTRACT

Intracranial aneurysms are vascular diseases characterized by local aneurysms of intracranial arteries. Their etiology involves a variety of environmental and genetic factors. Unruptured intracranial aneurysms (UIAs) are more common in intracranial aneurysms, but once an aneurysm is ruptured, the fatality rate and disability rate are extremely high. Therefore, accurate assessment of each step in the detection of intracranial aneurysms, assessment of the risk of rupture, formulation of treatment strategies, and treatment benefits will help to better treat the disease. At present, the treatment of intracranial aneurysms is limited. Except for surgical intervention, there are no other effective methods. Therefore, when a patient has a UIA, the formulation of treatment and management strategies is a difficult issue facing neurosurgery. This article introduces the choice of different treatment strategies for 3 patients with intracranial aneurysms complicated with other diseases and reviews the literature.

11.
Front Oncol ; 11: 728047, 2021.
Article in English | MEDLINE | ID: mdl-34631556

ABSTRACT

Improvement of understanding of the safety profile and biological significance of antidiabetic agents in breast cancer (BC) progression may shed new light on minimizing the unexpected side effect of antidiabetic reagents in diabetic patients with BC. Our recent finding showed that Saxagliptin (Sax) and Sitagliptin (Sit), two common antidiabetic dipeptidyl peptidase-4 inhibitors (DPP-4i) compounds, promoted murine BC 4T1 metastasis via a ROS-NRF2-HO-1 axis in nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice. However, the potential role of DPP-4i in BC progression under immune-competent status remains largely unknown. Herein, we extended our investigation and revealed that Sax and Sit also accelerated murine BC 4T1 metastasis in orthotopic, syngeneic, and immune-competent BALB/c mice. Mechanically, we found that DPP-4i not only activated ROS-NRF2-HO-1 axis but also triggered reactive oxygen species (ROS)-dependent nuclear factor kappa B (NF-κB) activation and its downstream metastasis-associated gene levels in vitro and in vivo, while NF-кB inhibition significantly abrogated DPP-4i-driven BC metastasis in vitro. Meanwhile, inhibition of NRF2-HO-1 activation attenuated DPP-4i-driven NF-кB activation, while NRF2 activator ALA enhanced NF-кB activation, indicating an essential role of ROS-NRF2-HO-1 axis in DPP-4i-driven NF-кB activation. Furthermore, we also found that DPP-4i increased tumor-infiltrating CD45, MPO, F4/80, CD4, and Foxp3-positive cells and myeloid-derived suppressor cells (MDSCs), and decreased CD8-positive lymphocytes in metastatic sites, but did not significantly alter cell viability, apoptosis, differentiation, and suppressive activation of 4T1-induced splenic MDSCs. Moreover, we revealed that DPP-4i triggered ROS-NF-κB-dependent NLRP3 inflammasome activation in BC cells, leading to increase in inflammation cytokines such as interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), IL-1ß and IL-33, and MDSCs inductors granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, and M-CSF, which play a crucial role in the remodeling of tumor immune-suppressive microenvironment. Thus, our findings suggest that antidiabetic DPP-4i reprograms tumor microenvironment that facilitates murine BC metastasis by interaction with BC cells via a ROS-NRF2-HO-1-NF-κB-NLRP3 axis. This finding not only provides a mechanistic insight into the oncogenic ROS-NRF2-HO-1 in DPP-4i-driven BC progression but also offers novel insights relevant for the improvement of tumor microenvironment to alleviate DPP-4i-induced BC metastasis.

12.
Front Oncol ; 11: 679816, 2021.
Article in English | MEDLINE | ID: mdl-34123848

ABSTRACT

Cancer has been as one of common comorbidities of diabetes. Long-term antidiabetic treatment may potentially exert uncertain impacts on diabetic patients with cancer including breast cancer (BC). Dipeptidyl peptidase-4 inhibitors (DPP-4i) are currently recommended by the AACE as first-line hypoglycemic drugs in type 2 diabetes mellitus (T2DM). Although the safety of DPP-4i has been widely evaluated, the potential side-effects of DPP-4i in cancer metastasis were also reported and remain controversial. Here, we revealed that Saxagliptin (Sax) and Sitagliptin (Sit), two common DPP-4i compounds, potentially promoted murine BC 4T1 metastasis in vitro and in vivo under immune-deficient status. Mechanically, we observed that DPP-4i treatment induced aberrant oxidative stress by triggering ROS overproduction, as well as ROS-dependent NRF2 and HO-1 activations in BC cells, while specific inhibition of ROS, NRF2 or HO-1 activations abrogated DPP-4i-driven BC metastasis and metastasis-associated gene expression in vitro. Furthermore, ALA, a NRF2 activator significantly promoted BC metastasis in vitro and in vivo, which can be abrogated by specific HO-1 inhibition in vitro. Moreover, specific HO-1 inhibition not only reversed DPP-4i-induced NRF2 activation but also abrogated ALA-induced NRF2 activation, resulting in a decrease of metastasis-associated genes, indicating a positive-feedback NRF2-HO-1 loop. Our findings suggest that DPP-4i accelerates murine BC metastasis through an oncogenic ROS-NRF2-HO-1 axis via a positive-feedback NRF2-HO-1 loop. Therefore, this study not only offers novel insights into an oncogenic role of DPP-4i in BC progression but also provides new strategies to alleviate the dark side of DPP-4i by targeting HO-1.

13.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(1): 55-63, 2021 Jan 30.
Article in Chinese | MEDLINE | ID: mdl-33509753

ABSTRACT

OBJECTIVE: To investigate the role of NDUFA13 inactivation in the pathogenesis of spontaneous hepatitis in mice and explore the possible mechanisms. METHODS: Hepatocyte-specific NDUFA13 knockout (NDUFA13fl/-) mice were generated by intercrossing NDUFA13fl/fl and Alb-Cre mice based on Cre/loxP transgenic technology, and tail and liver DNA of the mice was genotyped by PCR analysis. Ten NDUFA13fl/- mice and 10 littermate control NDUFA13fl/fl mice were housed, and in each group, 5 mice were euthanized at the age of 4 weeks and the other 5 at two years for pathological examination of the liver tissues with HE staining. Immunohistochemistry was used to verify the expression levels of NDUFA13, NF-κB/p65, NF-κB/p-p65 and inflammasome NLRP3. The total intracellular ROS and mitochondrial ROS levels were measured with a ROS staining kit. The expressions of the inflammatory cell markers (CD45, MPO, and F4/80) and inflammatory cytokines (IL1ß and IL33) in the liver were detected with immunohistochemistry and immunofluorescence assay. RESULTS: Liver-specific NDUFA13 heterozygous knockout mice were successfully constructed as verified by PCR results. HE staining revealed severe liver damage in both 4- week-old and 2-year-old NDUFA13fl/- mice as compared with their littermate controls. Immunohistochemistry showed a significant decrease of NDUFA13 expression in both 4-week-old and 2-year-old NDUFA13fl/- mice (P < 0.05). The expression levels of NF-κB signals p65, p-p65 and NLRP3 inflammasomes were all significantly increased in NDUFA13fl/- mice (P < 0.05). The total intracellular ROS and mitochondrial ROS levels in NDUFA13fl/- mice were also significantly increased. NDUFA13 knockout obviously promoted the expression of the inflammatory cell markers (CD45, MPO and F4/80) and the secretion of IL-1ß and IL-33 in the liver tissue of the mice (P < 0.05). CONCLUSIONS: Hepatocytes-specific NDUFA13 ablation can trigger spontaneous hepatitis in mice possibly mediated by the activation of ROS/NF-κB/NLRP3 signaling.


Subject(s)
Hepatitis , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Inflammasomes , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction
14.
Gastric Cancer ; 24(1): 117-132, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32770429

ABSTRACT

BACKGROUND: NRF2, a prime target of cellular defense against oxidative stress, has shown a dark side profile in cancer progression. GRIM-19, an essential subunit of the mitochondrial MRC complex I, was recently identified as a suppressive role in tumorigenesis of human gastric cancer (GC). However, little information is available on the role of GRIM-19 and its cross-talk with NRF2 in GC metastasis. METHODS: Online GC database was used to investigate DNA methylation and survival outcomes of GRIM-19. CRISPR/Cas9 lentivirus-mediated gene editing, metastasis mice models and pharmacological intervention were applied to investigate the role of GRIM-19 deficiency in GC metastasis. Quantitative RT-PCR, FACS, Western blot, IHC, IF and reporter gene assay were performed to explore underlying mechanisms. RESULTS: Low GRIM-19 is correlated with poor survival outcome of GC patients while DNA hypermethylation is associated with GRIM-19 downregulation. GRIM-19 deficiency facilitates GC metastasis and triggers aberrant oxidative stress as well as ROS-dependent NRF2-HO-1 activation. Experimental interventions of specific ROS, NRF2 or HO-1 inhibitor significantly abrogate GRIM-19 deficiency-driven GC metastasis in vitro and in vivo. Moreover, HO-1 inhibition not only reverses GRIM-19 deficiency-driven NRF2 activation, but also feedback blocks NRF2 activator-induced NRF2 signaling, resulting in decreased metastasis-associated genes. CONCLUSIONS: Our data suggest that GRIM-19 deficiency accelerates GC metastasis through the oncogenic ROS-NRF2-HO-1 axis via a positive-feedback NRF2-HO-1 loop. Therefore, this study not only offers novel insights into the role of oncogenic NRF2 in tumor progression, but also provides new strategies to alleviate the dark side of NRF2 by targeting HO-1.


Subject(s)
Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , NADH, NADPH Oxidoreductases/deficiency , NF-E2-Related Factor 2/metabolism , Neoplasm Metastasis/genetics , Reactive Oxygen Species/metabolism , Stomach Neoplasms/genetics , Animals , CRISPR-Associated Protein 9/genetics , DNA Methylation/genetics , Databases, Genetic , Disease Models, Animal , Down-Regulation/genetics , Gene Editing , Humans , Mice , Mitochondria/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , Oxidative Stress/genetics , Receptor Cross-Talk , Signal Transduction/genetics , Transcriptional Activation/genetics
15.
Sci Rep ; 10(1): 12264, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32704028

ABSTRACT

Leber hereditary optic neuropathy (LHON) is a degenerative disease of the optic nerve associated with one of three mitochondrial DNA (mtDNA) m.3460G>A, m.11778G>A and m.14484T>C mutations. Although several procedures are available to genotype these mutations, quantitative approaches with rapid, low-cost and easy to handle advantages for three LHON mtDNA mutations are rarely reported. Here, we firstly developed a "one-step" tetra-primer amplification-refractory mutation system (T-ARMS) PCR for qualitative genotyping of three LHON mtDNA mutations. Subsequently, we established single, duplex and triplex TaqMan MGB probe-based fluorescence quantitative PCR (qPCR) assays to perform both qualitative and quantitative analyses of three LHON mtDNA mutations. Standard curves based on tenfold diluted plasmid standard exhibited high specificity and sensitivity, stable repeatability and reliable detectable ability of TaqMan probe qPCR assays without cross-reactivity upon probes combination. Moreover, by comparing with SYBR Green qPCR, we further validated the feasibility of the triplex-probe qPCR assay for the quantitative detection of mtDNA copy number in blood samples. In conclusion, our study describes a rapid, low-cost, easy to-handle, and high-throughput TaqMan-MGB probe qPCR assay to perform both qualitative and quantitative analysis of three primary LHON mtDNA mutations, offering a promising approach for genetic screening and testing of LHON mutations.


Subject(s)
DNA, Mitochondrial , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Mutation , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Real-Time Polymerase Chain Reaction , Alleles , Gene Frequency , Genes, Mitochondrial , Humans , Multiplex Polymerase Chain Reaction , RNA, Ribosomal/genetics , Real-Time Polymerase Chain Reaction/methods
16.
J Exp Clin Cancer Res ; 38(1): 55, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30728051

ABSTRACT

BACKGROUND: Dysregulated miR-7 and aberrant NF-κB activation were reported in various human cancers. However, the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in human gastric cancers (GC) metastasis remain largely unknown. This study is to investigate the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in GC and to explore the potential therapeutic effect of miR-7 to GC distant metastasis. METHODS: TCGA STAD and NCBI GEO database were used to investigate the expression profile of miR-7 and NF-κB RelA/p65 and clinical relevance. Lentivirus-mediated gene delivery was applied to explore the therapeutic effect of miR-7 in GC. Real-time PCR, FACS, IHC, IF, reporter gene assay, IP, pre-miRNA-7 processing and binding assays were performed. RESULTS: Low miR-7 correlated with high RelA/p65 in GC with a clinical relevance that low miR-7 and high RelA/p65 as prognostic indicators of poor survival outcome of GC patients. Moreover, an impaired pre-miR-7 processing caused by dysregulated Dicer1 expression is associated with downregulated miR-7 in GC cells. Functionally, delivery of miR-7 displays therapeutic effects to GC lung and liver metastasis by alleviating hemangiogenesis, lymphangiogenesis as well as inflammation cells infiltration. Mechanistically, miR-7 suppresses NF-κB transcriptional activity and its downstream metastasis-related molecules Vimentin, ICAM-1, VCAM-1, MMP-2, MMP-9 and VEGF by reducing p65 and p-p65-ser536 expression. Pharmacologic prevention of NF-κB activator LPS obviously restored miR-7-suppressed NF-κB transcriptional activation and significantly reverted miR-7-inhibited cell migration and invasion. CONCLUSIONS: Our data suggest loss of miR-7 in GC promotes p65-mediated aberrant NF-κB activation, facilitating GC metastasis and ultimately resulting in the worse clinical outcome. Thus, miR-7 may act as novel prognostic biomarker and potential therapeutic target for aberrant NF-κB-driven GC distant metastasis.


Subject(s)
Adenocarcinoma/metabolism , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Transcription Factor RelA/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/mortality , Animals , Biomarkers, Tumor/metabolism , Cell Survival , Down-Regulation , Female , Gene Transfer Techniques , Humans , Lentivirus , Mice , Molecular Targeted Therapy , Neoplasm Invasiveness , Neoplasm Metastasis , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...