Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(6): 101579, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38776910

ABSTRACT

Molecular phenotypic variations in metabolites offer the promise of rapid profiling of physiological and pathological states for diagnosis, monitoring, and prognosis. Since present methods are expensive, time-consuming, and still not sensitive enough, there is an urgent need for approaches that can interrogate complex biological fluids at a system-wide level. Here, we introduce hyperspectral surface-enhanced Raman spectroscopy (SERS) to profile microliters of biofluidic metabolite extraction in 15 min with a spectral set, SERSome, that can be used to describe the structures and functions of various molecules produced in the biofluid at a specific time via SERS characteristics. The metabolite differences of various biofluids, including cell culture medium and human serum, are successfully profiled, showing a diagnosis accuracy of 80.8% on the internal test set and 73% on the external validation set for prostate cancer, discovering potential biomarkers, and predicting the tissue-level pathological aggressiveness. SERSomes offer a promising methodology for metabolic phenotyping.


Subject(s)
Phenotype , Prostatic Neoplasms , Spectrum Analysis, Raman , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Spectrum Analysis, Raman/methods , Male , Metabolomics/methods , Metabolome , Biomarkers, Tumor/metabolism , Cell Line, Tumor
2.
Comput Biol Med ; 169: 107840, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157773

ABSTRACT

Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain, especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarize both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review can inspire the research community to explore solutions to this challenge and further advance the field of medical image segmentation.


Subject(s)
Image Processing, Computer-Assisted , Supervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...