Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(3): e2305374, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37652460

ABSTRACT

Extracellular vesicles (EVs) have inherent advantages over cell-based therapies in regenerative medicine because of their cargos of abundant bioactive cues. Several strategies are proposed to tune EVs production in vitro. However, it remains a challenge for manipulation of EVs production in vivo, which poses significant difficulties for EVs-based therapies that aim to promote tissue regeneration, particularly for long-term treatment of diseases like peripheral neuropathy. Herein, a superparamagnetic nanocomposite scaffold capable of controlling EVs production on-demand is constructed by incorporating polyethyleneglycol/polyethyleneimine modified superparamagnetic nanoparticles into a polyacrylamide/hyaluronic acid double-network hydrogel (Mag-gel). The Mag-gel is highly sensitive to a rotating magnetic field (RMF), and can act as mechano-stimulative platform to exert micro/nanoscale forces on encapsulated Schwann cells (SCs), an essential glial cell in supporting nerve regeneration. By switching the ON/OFF state of the RMF, the Mag-gel can scale up local production of SCs-derived EVs (SCs-EVs) both in vitro and in vivo. Further transcriptome sequencing indicates an enrichment of transcripts favorable in axon growth, angiogenesis, and inflammatory regulation of SCs-EVs in the Mag-gel with RMF, which ultimately results in optimized nerve repair in vivo. Overall, this research provides a noninvasive and remotely time-scheduled method for fine-tuning EVs-based therapies to accelerate tissue regeneration, including that of peripheral nerves.


Subject(s)
Extracellular Vesicles , Peripheral Nerves , Schwann Cells/physiology , Nerve Regeneration/physiology , Magnetic Iron Oxide Nanoparticles
2.
Adv Sci (Weinh) ; 10(32): e2304487, 2023 11.
Article in English | MEDLINE | ID: mdl-37789583

ABSTRACT

Addressing the challenge of promoting directional axonal regeneration in a hostile astrocytic scar, which often impedes recovery following spinal cord injury (SCI), remains a daunting task. Cell transplantation is a promising strategy to facilitate nerve restoration in SCI. In this research, a pro-regeneration system is developed, namely miR-26a@SPIONs-OECs, for olfactory ensheathing cells (OECs), a preferred choice for promoting nerve regeneration in SCI patients. These entities show high responsiveness to external magnetic fields (MF), leading to synergistic multimodal cues to enhance nerve regeneration. First, an MF stimulates miR-26a@SPIONs-OECs to release extracellular vesicles (EVs) rich in miR-26a. This encourages axon growth by inhibiting PTEN and GSK-3ß signaling pathways in neurons. Second, miR-26a@SPIONs-OECs exhibit a tendency to migrate and orientate along the direction of the MF, thereby potentially facilitating neuronal reconnection through directional neurite elongation. Third, miR-26a-enriched EVs from miR-26a@SPIONs-OECs can interact with host astrocytes, thereby diminishing inhibitory cues for neurite growth. In a rat model of SCI, the miR-26a@SPIONs-OECs system led to significantly improved morphological and motor function recovery. In summary, the miR-26a@SPIONS-OECs pro-regeneration system offers innovative insights into engineering exogenous cells with multiple additional cues, augmenting their efficacy for stimulating and guiding nerve regeneration within a hostile astrocytic scar in SCI.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Rats , Humans , Animals , Astrocytes/metabolism , Cicatrix/pathology , Axon Guidance , Glycogen Synthase Kinase 3 beta/metabolism , Nerve Regeneration/physiology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Magnetic Phenomena , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Mater Today Bio ; 18: 100535, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36654965

ABSTRACT

The repair of annulus fibrosus (AF) defect after discectomy in the intervertebral disc (IVD) has presented a challenge over the past decade. Hostile microenvironments in the IVD, including, compression and hypoxia, are critical issues that require special attention. Till date, little information is available on potential strategies to cope with the hypoxia dilemma in AF defect sites. In this study, perfluorotributylamine (PFTBA) core-shell fibers were fabricated by coaxial electrospinning to construct oxygen-releasing scaffold for promoting endogenous repair in the AF after discectomy. We demonstrated that PFTBA fibers (10% chitosan, chitosan: PCL, 1:6) could release oxygen for up to 144 â€‹h. The oxygen released from PFTBA fibers was found to protect annulus fibrosus stem cells (AFSCs) from hypoxia-induced apoptosis. In addition, the PFTBA fibers were able to promote proliferation, migration and extracellular matrix (ECM) production in AFSCs under hypoxia, highlighting their therapeutic potential in AF defect repair. Subsequent in vivo studies demonstrated that oxygen-supplying fibers were capable of ameliorating disc degeneration after discectomy, which was evidenced by improved disc height and morphological integrity in rats with the oxygen-releasing scaffolds. Further transcriptome analysis indicated that differential expression genes (DEGs) were enriched in "oxygen transport" and "angiogenesis", which likely contributed to their beneficial effect on endogenous AF regeneration. In summary, the oxygen-releasing scaffold provides novel insights into the oxygen regulation by bioactive materials and raises the therapeutic possibility of oxygen supply strategies for defect repair in AF, as well as other aerobic tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...