Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 16(9): 1852-6, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26097118

ABSTRACT

Stimuli-directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo-TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the trans-cis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated.

2.
Chem Commun (Camb) ; 51(48): 9845-8, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-25989830

ABSTRACT

Light-driven phase transition in liquid crystals is a fascinating endeavour from both scientific and technological points of view. Here we demonstrate the proof-of-principle that the photothermal effect of organo-soluble plasmonic gold nanorods can introduce the phase transition of thermotropic liquid crystals upon near infrared laser irradiation. Interestingly, the reverse process occurs when the laser is switched off.


Subject(s)
Gold/chemistry , Liquid Crystals/chemistry , Nanocomposites/chemistry , Nanotubes/chemistry , Sulfhydryl Compounds/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Hydrophobic and Hydrophilic Interactions , Infrared Rays , Microscopy, Electron, Transmission , Nanocomposites/radiation effects , Nanotubes/ultrastructure , Phase Transition , Surface-Active Agents/chemistry
3.
Chem Commun (Camb) ; 50(38): 4955-8, 2014 May 18.
Article in English | MEDLINE | ID: mdl-24706092

ABSTRACT

In this communication we report on the synthesis and charge mobility of highly soluble perylenebisimid derivatives. We show that introduction of alkylester side chains results in compounds combining a high solubility with charge mobilities up to 0.22 cm(2) V(-1) s(-1). These materials are therefore interesting as an electron acceptor for solution-processed organic photovoltaics.

4.
J Am Chem Soc ; 136(12): 4480-3, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24666208

ABSTRACT

Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.

5.
ACS Nano ; 8(3): 3015-22, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24568304

ABSTRACT

High energy efficiency and long cycleability are two important performance measures for Li-air batteries. Using a rationally designed oxygen electrode based on a vertically aligned nitrogen-doped coral-like carbon nanofiber (VA-NCCF) array supported by stainless steel cloth, we have developed a nonaqueous Li-O2 battery with an energy efficiency as high as 90% and a narrow voltage gap of 0.3 V between discharge/charge plateaus. Excellent reversibility and cycleability were also demonstrated for the newly developed oxygen electrode. The observed outstanding performance can be attributed to its unique vertically aligned, coral-like N-doped carbon microstructure with a high catalytic activity and an optimized oxygen/electron transportation capability, coupled with the microporous stainless steel substrate. These results demonstrate that highly efficient and reversible Li-O2 batteries are feasible by using a rationally designed carbon-based oxygen electrode.

6.
Angew Chem Int Ed Engl ; 52(51): 13703-7, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24150899

ABSTRACT

A good turn: Three compounds that bear two axially chiral bridged binaphthyl units were developed as photodynamic chiral dopants for nematic liquid crystals. For compounds with suitable bridge lengths, a change in the dihedral angle induced a switch of the binaphthyl units from the cisoid to the transoid form upon UV irradiation, which led to an inversion of the handedness of the helices.

7.
J Am Chem Soc ; 135(16): 5990-3, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23574492

ABSTRACT

A light-driven, linear, chiral supramolecular polymer was constructed in water by host-guest molecular recognition between bis(p-sulfonatocalix[4]arene) and the α-cyclodextrin-based pseudo[3]rotaxane containing axially chiral 1,1'-binaphthyl and photoresponsive azobenzene moieties. The successful supramolecular polymerization by non-covalent host-guest molecular recognition was confirmed by (1)H NMR spectroscopy and dynamic light scattering (DLS) measurements, and its photoresponsive behavior was investigated by UV-vis absorption spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The chirality of this supramolecular polymer was confirmed by circular dichroism spectroscopy. The dramatic morphology change of this chiral polymer driven by light was observed in SEM, AFM and TEM images. More interestingly, dynamically self-assembled, light-driven, single-helical linear supramolecular polymer molecules with lengths of hundreds of nanometers to micrometers in water were directly observed in their native state using cryo-TEM measurements. The observation of considerably lengthy individual supramolecular polymer molecules indicates that the molecular self-assembly in water by non-covalent host-guest molecular recognition is sufficiently strong to form the supramolecular polymer. Moreover, preliminary molecular modeling was performed to substantiate this interesting photoresponsive supramolecular structure.

8.
J Colloid Interface Sci ; 398: 1-6, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23489614

ABSTRACT

Porphyrin metal (Zn, Cu, and Mg) complex monolayer-protected gold nanorods (GNRs) were, for the first time, synthesized. Their synthesis was easy to access by mixing porphyrin encapsulated GNRs with corresponding excess soluble metal salts in solution, followed by the facile purification through centrifugation and sonication due to the gravity of the GNRs and their solubility in organic solvents. Furthermore, the resulting three GNRs exhibited distinct spectroscopic properties and were able to self-assemble into side-by-side arrays driven by π-π intermolecular interactions of the surface metal porphyrin chromophores.

9.
Langmuir ; 28(14): 5956-63, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22424109

ABSTRACT

Organo-soluble porphyrin mixed monolayer-protected gold nanorods were synthesized and characterized. The resulting gold nanorods encapsulated by both porphyrin thiol and alkyl thiol on their entire surface with strong covalent Au-S linkages were very stable in organic solvents without aggregation or decomposition and exhibited unique optical properties different from their corresponding spherical ones. Alkyl thiol acts as a stabilizer not only to fill up the potential space on gold nanorod surface between bulky porphyrin molecules but also to provide space for further insertion of C(60) molecules forming a stable C(60)-porphyrin-gold nanorod hybrid nanostructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...