Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Dis ; 15(4): 2037-2050, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37197496

ABSTRACT

Background: Lung adenocarcinoma (LUAD) is the most common type of lung cancer, has a high incidence rate and is a serious threat to human health. However, the pathogenesis of LUAD is still unclear. Further research on the pathogenesis of LUAD may provide targets for the early diagnosis and treatment of LUAD. Methods: First, a transcriptome analysis was conducted to sequence the messenger RNA (mRNA) and micro RNA (miRNA) of the LUAD and adjacent control tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were then performed for the functional annotation. Next, a differential miRNA-differential mRNA regulatory network was then constructed, and the function of the mRNAs in the network was analyzed and the key regulatory molecules (the hub molecules) were identified. Cytohubba was then used to analyze the top 20 hub molecules in the total miRNA-mRNA network, and the miRNAs regulating the top 20 hub genes (of which 2 were upregulated and 18 were downregulated). Finally, the key molecules were identified. Results: By analyzing the function of the mRNA molecules in the regulatory network, we found that the immune response was inhibited, as were the movement and adhesion of immune-related cells; however, cell tumorigenesis, body death, and tumor cell proliferation were activated. The functions of the 20 hub molecules were mainly related to cytotoxicity, cell exosmosis, and cell adhesion mediated by immune cells. Further, we found that miR-5698, miR224-5p, and miR4709-3P regulate multiple key genes (e.g., PECAM1, CX3CR1, KLRD1, and CXCL12), and may be the key miRNAs regulating LUAD. Conclusions: Immune response, cell tumorigenesis, and tumor cell proliferation play central roles in the overall regulatory network. miR-5698, miR224-5p, and miR4709-3p may be important biomarkers for the occurrence and development of LUAD and have great potential in the prognosis of LUAD patients and the development of new therapeutic targets.

2.
J Thorac Dis ; 15(12): 6996-7012, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249888

ABSTRACT

Background: Transcription factors (TFs) play a crucial role in the occurrence and progression of lung adenocarcinoma (LUAD), and targeting TFs is an important direction for treating LUAD. However, targeting a single TF often fails to achieve satisfactory therapeutic outcomes. Furthermore, the regulatory TF-target gene networks involved in the development of LUAD is complex and not yet fully understood. Methods: In this study, we performed RNA sequencing (RNA-seq) to analyze the transcriptome profile of human LUAD tissues and matched adjacent nontumor tissues. We selected the differentially expressed TFs, performed enrichment analysis and survival curve analysis, and predicted the regulatory networks of the top differential TFs with their target genes. Finally, alternative splicing analyses were also performed. Results: We found that TFs GRHL3, SIX1, SIX2, SPDEF, and ETV4 were upregulated, while TAL1, EPAS1, SOX17, NR4A1, and EGR3 were significantly downregulated in LUAD tissues compared to normal tissues. We propose a potential GRHL3-CDH15-Wnt-ß-catenin pro-oncogenic signaling axis and a potential TAL1-ADAMTS1-vascular antioncogenic signaling axis. In addition, we found that alternative splicing of intron retention (IR), approximate IR (XIR), multi-IR (MIR), approximate MIR (XMIR), and approximate alternative exon ends (XAE) showed abnormally increased frequencies in LUAD tissues. Conclusions: These findings revealed a novel TF-target gene regulatory axis related to tumorigenesis and provided potential therapeutic targets and mechanisms for LUAD.

3.
J Thorac Dis ; 15(12): 6831-6847, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249924

ABSTRACT

Background: No effective drugs for the treatment of sepsis-induced diaphragm dysfunction are currently available. Therefore, it is particularly important to clarify the molecular regulatory mechanism of this condition and subsequently implement effective treatment and prevention of sepsis-induced diaphragm dysfunction. Methods: A mouse model of diaphragm dysfunction was established via injection of lipopolysaccharide (LPS). An RNA-sequencing (RNA-seq) technique was used to detect the differentially expressed genes (DEGs) in the diaphragms of mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for functional analysis of DEGs. The protein-protein interaction network obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website was imported into Cytoscape, the key molecular regulatory network was constructed with CytoNCA, the ClueGo plugin was further used to analyze the core regulatory pathways of key molecular, and finally, the iRegulon plugin was used to the identify key transcription factors. Results: The genes upregulated after LPS treatment were involved in biological processes and pathways related to immune response; the genes downregulated after LPS treatment were mainly correlated with the muscle contraction. The expressions of several inflammation-related genes were upregulated after LPS treatment, of which tumor necrosis factor (Tnf), interleukin (Il)-1ß, and Il-6 assumed a core regulatory role in the network; meanwhile, the downregulated key genes included Col1a1, Uqcrfs1, Sdhb, and ATP5a1, among others. These key regulatory factors participated in the activation of Toll-like receptor (TLR) signaling pathway, nuclear factor (NF)-κB signaling pathway, and TNF signaling pathway as well as the inhibition of oxidative phosphorylation pathway, cardiac muscle contraction pathway, and citrate cycle pathway. Finally, RelA, IRF1, and STAT3, were identified as the key regulators in the early stage of diaphragmatic inflammatory response. Conclusions: Sepsis-induced diaphragm dysfunction in mice is closely correlated with the activation of TLR signaling pathway, NF-κB signaling pathway, and TNF signaling pathway and the inhibition of oxidative phosphorylation pathway, cardiac muscle contraction pathway, and citrate cycle pathway. Our findings provide insight into the molecular mechanism of sepsis-induced diaphragm dysfunction in mice and provide a promising new strategy for targeted treatment of diaphragm dysfunction.

4.
Ann Transl Med ; 10(24): 1374, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36660663

ABSTRACT

Background: Lung adenocarcinoma (LUAD) is the most common type of lung cancer, and its pathogenesis is still unclear. The present study aimed to investigate the role of miR-202-3p and its downstream target gene, ribonucleotide reductase regulatory subunit M2 (RRM2), in the occurrence and development of LUAD and elucidate the correlation between RRM2 and the clinicopathological stage and prognosis of LUAD. Methods: The expression of miR-202-3p was analyzed using the CancerMIRNome database and quantitative polymerase chain reaction (qPCR). The effects of miR-202-3p and RRM2 on the proliferation, migration, and invasion of A549 cells were analyzed. A dual luciferase reporter assay was used to verify the targeting of miR-202-3p and RRM2. Additionally, the correlation between RRM2 expression and clinicopathology was analyzed. Results: (I) MiR-202-3p was lowly expressed in LUAD and the LUAD cell lines. qPCR confirmed that microRNA (miRNA) transfection was effective and sufficient for subsequent experiments. (II) MiR-202-3p inhibited the proliferation, invasion, and migration of LUAD cells. (III) There was a targeting relationship between miR-202-3p and RRM2, and miR-202-3p affected the expression of the RRM2 protein. RRM2 was highly expressed in lung cancer tissue. (IV) RRM2 was associated with the clinicopathological staging of lung cancer. The prognosis of patients with low RRM2 expression was better, and the prognostic sensitivity of RRM2 to lung cancer was high. RRM2 may exert its effects via the Notch pathway. (V) Si-RRM2 inhibited the expression of the RRM2 protein. RRM2 promoted the proliferation, migration, and invasion of LUAD cells. A miR-202-3p inhibitor restored the inhibitory effect of si-RRM2 on LUAD cells. Conclusions: MiR-202-3p was lowly expressed in lung cancer tissue. MiR-202-3p overexpression inhibited the proliferation and metastasis of lung cancer cells. RRM2 was highly expressed in lung cancer tissue and promoted the proliferation and metastasis of lung cancer cells. MiR-202-3p targeted and inhibited RRM2, thereby reducing the proliferation and metastasis of LUAD cells. LUAD patients with low RRM2 expression had a better prognosis, and the expression level of RRM2 was correlated with the clinical characteristics of lung cancer patients.

5.
Exp Ther Med ; 19(5): 3247-3258, 2020 May.
Article in English | MEDLINE | ID: mdl-32266020

ABSTRACT

The activation of monocytes and macrophages is associated with steroid-resistant (SR) asthma. Interleukin-35 (IL-35) is an important anti-inflammatory cytokine, but its regulatory effects on monocytes in patients with SR asthma is not fully understood. Based on clinical response to oral prednisolone, 34 patients with steroid-sensitive (SS) asthma and 20 patients with SR asthma were enrolled in the present study. Serum IL-35 levels were analyzed using the Luminex 200 platform. Monocytes from patients with asthma were pretreated with IL-35 followed by dexamethasone (DEX) and lipopolysaccharide (LPS), then corticosteroid sensitivity was evaluated according to the half-maximal inhibitory concentration of DEX with respect to LPS-induced IL-6 maximal production in monocytes (DEX-IC50). The percentage of maximal inhibition of IL-6 by DEX was presented as Emax. Phosphorylated-P38 mitogen activated kinase (p-p38 MAPK) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were examined by flow cytometry and reverse transcription-quantitative PCR analysis, respectively. Glucocorticoid receptor (GR) binding to the glucocorticoid response element (GRE) was assessed by chromatin immunoprecipitation. Compared with patients with SS asthma, patients with SR asthma had lower IL-35 expression levels (P<0.05). Correlation analysis results demonstrated that the expression levels of IL-35 showed a weak negative correlation with log DEX-IC50 (r=-0.351; P<0.01) and a moderate positive correlation with Emax value (r=0.4501; P<0.01) in all patients with asthma. Moreover, IL-35 enhanced DEX-suppressed IL-6 production and the DEX-induced upregulation of the MKP-1 mRNA expression level in monocytes from both patient groups (P<0.01). In addition, IL-35 inhibited p-p38 MAPK expression in monocytes, and these effects were mediated via an increase in DEX-induced GR binding to GRE. Therefore, IL-35 may be involved in the corticosteroid enhancing effects in monocytes of patients with SR and SS asthma, suggesting potential benefits of IL-35 supplementation in asthmatics with DEX.

SELECTION OF CITATIONS
SEARCH DETAIL
...