Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.794
Filter
1.
Ultrasonics ; 141: 107338, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38723293

ABSTRACT

Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.

2.
Bioact Mater ; 39: 74-105, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38783927

ABSTRACT

Mg is a typical biodegradable metal widely used for biomedical applications due to its considerable mechanical properties and bioactivity. Biodegradable polymers have attracted great interest owing to their favorable processability and inclusiveness. However, it is challenging for the degradation rates of Mg or polymers to precisely match tissue repair processes, and the significant changes in local pH during degradation hinder tissue repair. The concept of combining Mg with polymers is proposed to overcome the shortcomings of materials, aiming to meet repair needs from various aspects such as mechanics and biology. Therefore, it is essential to systematically understand the behavior of biodegradable Mg/polymer composite (BMPC) from the design, manufacturing, mechanical properties, degradation, and biological effects. In this review, we elaborate on the design concepts and manufacturing strategies of high-strength BMPC, the "structure-function" relationship between the microstructures and mechanical properties of composites, the variation in the degradation rate due to endogenous and exogenous factors, and the establishment of advanced degradation research platform. Additionally, the interplay among composite components during degradation and the biological function of composites under non-responsive/stimuli-responsive platforms are also discussed. Finally, we hope that this review will benefit future clinical applications of "structure-function" integrated biomaterials.

3.
Nat Commun ; 15(1): 4346, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773182

ABSTRACT

Narrow bandwidths are a general bottleneck for applications relying on passive, linear, subwavelength resonators. In the past decades, several efforts have been devoted to overcoming this challenge, broadening the bandwidth of small resonators by the means of analog non-Foster matching networks for radiators, antennas and metamaterials. However, most non-Foster approaches present challenges in terms of tunability, stability and power limitations. Here, by tuning a subwavelength acoustic transducer with digital non-Foster-inspired electronics, we demonstrate five-fold bandwidth enhancement compared to conventional analog non-Foster matching. Long-distance transmission over airborne acoustic channels, with approximately three orders of magnitude increase in power level, validates the performance of the proposed approach. We also demonstrate convenient reconfigurability of our non-Foster-inspired electronics. This implementation provides a viable solution to enhance the bandwidth of sub-wavelength resonance-based systems, extendable to the electromagnetic domain, and enables the practical implementation of airborne and underwater acoustic radiators.

4.
World J Gastrointest Surg ; 16(4): 1066-1077, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38690040

ABSTRACT

BACKGROUND: The management of hepatoblastoma (HB) becomes challenging when the tumor remains in close proximity to the major liver vasculature (PMV) even after a full course of neoadjuvant chemotherapy (NAC). In such cases, extreme liver resection can be considered a potential option. AIM: To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC. METHODS: We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023. We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC. RESULTS: Sixty-seven children diagnosed with HB underwent surgical resection. The age at diagnosis was 21.4 ± 18.8 months, and 40 boys and 27 girls were included. Fifty-nine (88.1%) patients had a single tumor, 39 (58.2%) of which was located in the right lobe of the liver. A total of 47 patients (70.1%) had PRE-TEXT III or IV. Thirty-nine patients (58.2%) underwent delayed resection. After a full course of NAC, 16 patients still had close PMV (within 1 cm in two patients, touching in 11 patients, compressing in four patients, and showing tumor thrombus in three patients). There were 6 patients of tumors in the middle lobe of the liver, and four of those patients exhibited liver anatomy variations. These 16 children underwent extreme liver resection after comprehensive preoperative evaluation. Intraoperative procedures were performed according to the preoperative plan, and the operations were successfully performed. Currently, the 3-year event-free survival of 67 children with HB is 88%. Among the 16 children who underwent extreme liver resection, three experienced recurrence, and one died due to multiple metastases. CONCLUSION: Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible. This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis. Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB, particularly for assessing vascular involvement, remnant liver volume and anatomical variations.

5.
World J Gastrointest Surg ; 16(4): 1109-1120, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38690052

ABSTRACT

BACKGROUND: The incidence of gastric cancer has significantly increased in recent years. Surgical resection is the main treatment, but the method of digestive tract reconstruction after gastric cancer surgery remains controversial. In the current study, we sought to explore a reasonable method of digestive tract reconstruction and improve the quality of life and nutritional status of patients after surgery. To this end, we statistically analyzed the clinical results of patients with gastric cancer who underwent jejunal interposition double-tract reconstruction (DTR) and esophageal jejunum Roux-en-Y reconstruction (RY). AIM: To explore the application effect of DTR in total laparoscopic radical total gastrectomy (TLTG) and evaluate its safety and efficacy. METHODS: We collected the relevant data of 77 patients who underwent TLTG at the Fourth Hospital of Hebei Medical University from October 2021 to January 2023. Among them, 35 cases were treated with DTR, and the remaining 42 cases were treated with traditional RY. After 1:1 propensity score matching, the cases were grouped into 31 cases per group, with evenly distributed data. The clinical characteristics and short- and long-term clinical outcomes of the two groups were statistically analyzed. RESULTS: The two groups showed no significant differences in basic data, intraoperative blood loss, number of lymph node dissections, first defecation time after operation, postoperative hospital stay, postoperative complications, and laboratory examination results on the 1st, 3rd, and 5th days after operation. The operation time of the DTR group was longer than that of the RY group [(307.58 ± 65.14) min vs (272.45 ± 62.09) min, P = 0.016], but the first intake of liquid food in the DTR group was shorter than that in the RY group [(4.45 ± 1.18) d vs (6.0 ± 5.18) d, P = 0.028]. The incidence of reflux heartburn (Visick grade) and postoperative gallbladder disease in the DTR group was lower than that in the RY group (P = 0.033 and P = 0.038). Although there was no significant difference in body weight, hemoglobin, prealbumin, and albumin between the two groups at 1,3 and 6 months after surgery, the diet of patients in the DTR group was better than that in the RY group (P = 0.031). CONCLUSION: The clinical effect of DTR in TLTG is better than that of RY, indicating that it is a more valuable digestive tract reconstruction method in laparoscopic gastric cancer surgery.

7.
J Hepatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759889

ABSTRACT

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme OXCT1. We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in hepatocellular carcinoma in vivo, we conducted multiplex immunohistochemistry (mIHC) experiments on human HCC specimens. To explore the role of OXCT1 in mouse hepatocellular carcinoma tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4 trimethylation (H3K4me3) level in the Arg1 promoter. In addition, Pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreasing CD8+ T-cell exhaustion and deceleration of tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in HCC patients. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping HCC progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for HCC. Here, we found that ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. And the strategic pharmacological intervention or genetic downregulation of OXCT1 in TAMs enhances the antitumor immunity and decelerated tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer.

8.
Int J Biol Macromol ; 270(Pt 1): 132405, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754661

ABSTRACT

Eucommia ulmoides rubber (EUR) is a high-quality natural rubber resource, which can be extracted from different organs of the Eucommia ulmoides tree. In this study, EUR was isolated from the leaves, barks, and pericarps, and the structural characteristics and physicochemical properties of EUR were systematically determined. The accumulation and distribution of EUR in different tissues were assessed through in situ observations combined with cellular and subcellular scales. The preliminary analyses indicated that the variations in the physicochemical properties of EUR across different tissues were associated with its accumulation microstructure. Further analyses by SEM and TEM showed that the initial cell differentiation and fusion resulted in the formation of tubular structures without any nucleus. A limited number of rubber particles were generated within the cytoplasm, concurrent with aggregation and fusion. Eventually, rubber particles filled the entire cytoplasm, and organelles disappeared to form highly aggregated filamentous structures. In addition, the number and area of EUR-containing cells were closely related to the organization sizes of barks and leaves. This study provided valuable insights into Eucommia ulmoides histology and the rubber industry.

9.
Adv Sci (Weinh) ; : e2309185, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741387

ABSTRACT

Quasi-2D perovskite quantum wells are increasingly recognized as promising candidates for direct-conversion X-ray detection. However, the fabrication of oriented and uniformly thick quasi-2D perovskite films, crucial for effective high-energy X-ray detection, is hindered by the inherent challenges of preferential crystallization at the gas-liquid interface, resulting in poor film quality. In addressing this limitation, a carbonyl array-synergized crystallization (CSC) strategy is employed for the fabrication of thick films of a quasi-2D Ruddlesden-Popper (RP) phase perovskite, specifically PEA2MA4Pb5I16. The CSC strategy involves incorporating two forms of carbonyls in the perovskite precursor, generating large and dense intermediates. This design reduces the nucleation rate at the gas-liquid interface, enhances the binding energies of Pb2+ at (202) and (111) planes, and passivates ion vacancy defects. Consequently, the construction of high-quality thick films of PEA2MA4Pb5I16 RP perovskite quantum wells is achieved and characterized by vertical orientation and a pure well-width distribution. The corresponding PEA2MA4Pb5I16 RP perovskite X-ray detectors exhibit multi-dimensional advantages in performance compared to previous approaches and commercially available a-Se detectors. This CSC strategy promotes 2D perovskites as a candidate for next-generation large-area flat-panel X-ray detection systems.

10.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709728

ABSTRACT

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Subject(s)
Colorimetry , Food Contamination , Fungicides, Industrial , Pesticide Residues , Fungicides, Industrial/analysis , Food Contamination/analysis , Colorimetry/methods , Pesticide Residues/analysis , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Fluorescence , Triticum/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Limit of Detection , Flour/analysis
11.
ACS Appl Mater Interfaces ; 16(19): 24525-24533, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698684

ABSTRACT

Due to the complex series of elementary steps involved, achieving deep photoreduction of CO2 to multielectron products such as CH4 remains a challenging task. Therefore, it is crucial to strategically design catalysts that facilitate the controlled formation of the crucial intermediates and provide precise control over the reaction pathway. Herein, we present a pioneering approach by employing polyhydroxy fullerene (PHF) molecules to modify the surface of Ni(OH)2, creating stable and effective synergistic sites to enhance the formation of CH4 from CO2 under light irradiation. As a result, the optimized PHF-modified Ni(OH)2 cocatalyst achieves a CH4 production rate of 455 µmol g-1 h-1, with an electron-based selectivity of approximately 60%. The combination of in situ characterizations and theoretical calculations reveals that the hydroxyl species on the surface of PHF can participate in stabilizing crucial intermediates and facilitating water activation, thereby altering the reaction pathway to form CH4 instead of CO. This study provides a novel approach to regulating the selectivity of photocatalytic CO2 reduction by exploring molecular surface modification through interfacing with functionalized carbon clusters.

12.
ACS Appl Mater Interfaces ; 16(20): 26025-26033, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717862

ABSTRACT

Bi-Sb-Te-based thermoelectric materials have the best room-temperature thermoelectric properties, but their inherent brittleness and rigidity limit their application in the wearable field. In this study, W-doped p-type Bi0.5Sb1.5Te3 (W-BST) thin films were prepared using magnetron sputtering on polyimide substrates to create thermoelectric generators (TEGs). Bending tests showed that the thin film has excellent flexibility and mechanical durability, meeting the flexible requirements of wearable devices. W doping can significantly increase the carrier concentration, Seebeck coefficient, and electrical conductivity of BST thin films. At 300 K, the power factor of the W-BST film is 2.25 times higher than that of the undoped film, reaching 13.75 µW cm-1 K-2. First-principles calculations showed that W doping introduces significant impurity peaks in the bandgap, in which W d electrons remarkably hybridize with the Sb and Te p electrons, leading to an improved electrical conductivity of BST films. Furthermore, W doping significantly reduces the work function of BST films, thereby improving the carrier mobility. A TEG module fabricated from four layers of W-BST thin films achieved a maximum output power density of 6.91 mW cm-2 at a temperature difference of 60 K. Application tests showed that the flexible TEG module could power a portable clock using the temperature difference between body temperature and room temperature. At a medium temperature of 439 K, the assembled TEG module can provide a stable output voltage of 1.51 V to power a LED. This study demonstrates the feasibility of combining inorganic thermoelectric materials with flexible substrates to create high-performance flexible TEGs.

13.
Front Immunol ; 15: 1354958, 2024.
Article in English | MEDLINE | ID: mdl-38698865

ABSTRACT

Background: There are few studies investigating the relationship between serum vitamin B6 and mortality risk in the elderly. This study hereby evaluated the associations between biomarkers of serum vitamin B6 status and cardiovascular, cancer, and all-cause mortality risks in the elderly. Methods: Our study included a total of 4,881 participants aged 60 years or older from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Serum vitamin B6 status was estimated based on levels of pyridoxal 5'-phosphate (PLP), 4-pyridoxic acid (4-PA), and vitamin B6 turnover rate (4-PA/PLP) detected by high-performance liquid chromatography. Survival status and corresponding causes of death were matched through the National Death Index records through December 31, 2019. Multivariate Cox regression model was adopted to assess the relationships between serum vitamin B6 status and the risk of mortality. Results: During a median follow-up period of 10.33 years, 507 cardiovascular deaths, 426 cancer deaths, and 1995 all-cause deaths were recorded, respectively. In the multivariate-adjusted Cox model, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the highest versus the lowest quartiles of PLP, 4-PA, and 4-PA/PLP were 0.70(0.54-0.90), 1.33(0.88-2.02), and 2.01(1.41-2.79) for cardiovascular mortality, 0.73(0.52-1.02), 1.05(0.71-1.57), and 1.95(1.25-3.05) for cancer mortality, and 0.62(0.53-0.74), 1.05(0.82-1.34), and 2.29(1.87-2.79) for all-cause mortality, respectively. Conclusion: Our study found that lower serum PLP levels were associated with increased risks of cardiovascular and all-cause mortality among the elderly population. And higher vitamin B6 turnover rate was associated with increased risks of cardiovascular, cancer, and all-cause mortality.


Subject(s)
Cardiovascular Diseases , Neoplasms , Vitamin B 6 , Humans , Female , Neoplasms/mortality , Neoplasms/blood , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Male , Aged , Vitamin B 6/blood , Middle Aged , Nutrition Surveys , Biomarkers/blood , Risk Factors , Cause of Death , Aged, 80 and over , Pyridoxal Phosphate/blood , Pyridoxic Acid/blood
14.
Curr Med Sci ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789818

ABSTRACT

OBJECTIVE: Diabetic foot ulcer (DFU) is one of the most serious complications of diabetes. Leukocyte- and platelet-rich fibrin (L-PRF) is a second-generation autologous platelet-rich plasma. This study aims to investigate the clinical effects of L-PRF in patients with diabetes in real clinical practice. METHODS: Patients with DFU who received L-PRF treatment and standard of care (SOC) from 2018 to 2019 in Tongji Hospital were enrolled. The clinical information including patient characteristics, wound evaluation (area, severity, infection, blood supply), SOC of DFU, and images of ulcers was retrospectively extracted and analyzed. L-PRF treatment was performed every 7±2 days until the ulcer exhibited complete epithelialization or an overall percent volume reduction (PVR) greater than 80%. Therapeutic effectiveness, including overall PVR and the overall and weekly healing rates, was evaluated. RESULTS: Totally, 26 patients with DFU were enrolled, and they had an ulcer duration of 47.0 (35.0, 72.3) days. The severity and infection of ulcers varied, as indicated by the Site, Ischemia, Neuropathy, Bacterial Infection, and Depth (SINBAD) scores of 2-6, Wagner grades of 1-4, and the Perfusion, Extent, Depth, Infection and Sensation (PEDIS) scores of 2-4. The initial ulcer volume before L-PRF treatment was 4.94 (1.50, 13.83) cm3, and the final ulcer volume was 0.35 (0.03, 1.76) cm3. The median number of L-PRF doses was 3 (2, 5). A total of 11 patients achieved complete epithelialization after the fifth week of treatment, and 19 patients achieved at least an 80% volume reduction after the seventh week. The overall wound-healing rate was 1.47 (0.63, 3.29) cm3/week, and the healing rate was faster in the first 2 weeks than in the remaining weeks. Concurrent treatment did not change the percentage of complete epithelialization or healing rate. CONCLUSION: Adding L-PRF to SOC significantly improved wound healing in patients with DFU independent of the ankle brachial index, SINBAD score, or Wagner grade, indicating that this method is appropriate for DFU treatment under different clinical conditions.

15.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804947

ABSTRACT

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

16.
Phys Rev Lett ; 132(19): 193601, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804949

ABSTRACT

Coherent and dissipative interactions between different quantum systems are essential for the construction of hybrid quantum systems and the investigation of novel quantum phenomena. Here, we propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions. We predict a strong-coupling mechanism between the magnonic mode of the micromagnet and the quantized helicity degree of freedom of the skyrmion. We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits. This work provides a quantum platform for the investigation of diverse quantum effects and quantum information processing with magnetic microstructures.

17.
Surg Endosc ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755464

ABSTRACT

BACKGROUND: Minimally invasive esophagectomy is the first-line approach for esophageal cancer; however, there has recently been a paradigm shift toward robotic esophagectomy (RE). We investigated the clinical outcomes of patients who underwent RE compared with those of patients who underwent conventional minimally invasive thoracoscopic esophagectomy (TE) for locally advanced cT3 or cT4 esophageal cancer using a propensity-matched analysis. METHODS: Overall, 342 patients with locally advanced cT3 or cT4 esophageal cancer underwent transthoracic esophagectomy with total mediastinal lymph node dissection between 2018 and 2022. The propensity-matched analysis was performed to assign the patients to either RE or TE by covariates of histological type, tumor location, and clinical N factor. RESULTS: Overall, 87 patients were recruited in each of the RE and TE groups according to the propensity-matched analysis. The total complication rate and the rates of the three major complications (recurrent laryngeal nerve paralysis, anastomotic leakage, and pneumonia) were not significantly different between the RE and TE groups. However, the peak C-reactive protein concentration on postoperative day 3, rate of surgical site infection, and intensive care unit length of stay after surgery were significantly shorter in the RE group than in the TE group. No significant differences were observed in the harvested total and mediastinal lymph nodes. The total operation time was significantly longer in the RE group, while the thoracic operation time was shorter in the RE group than in the TE group. There was no significant difference between the two groups in the recurrence rate of oncological outcomes after surgery. CONCLUSION: RE may facilitate early recovery after esophagectomy with total mediastinal lymph node dissection and has the same technical feasibility and oncological outcomes as TE.

18.
Sci Rep ; 14(1): 11473, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769099

ABSTRACT

Currently, the utilization of coalbed methane resources in the Guizhou region faces challenges such as complex reservoir structure, high gas content, and microporous development. Based on these, the pore structure and adsorption capacity of Guizhou tectonic deformed coals (TDCs) were evaluated using a suite of integrated diagnostic techniques including low-temperature nitrogen adsorption (LT-N2A), mercury intrusion porosimetry (MIP), methane isothermal adsorption. Through the above methods, the pore structure and adsorption characteristics of the samples were characterized; The samples were divided into the range of joint pores by combining the results of MIP and LT-N2A; Using the molecular simulation software, the 2 nm, 4 nm, 10 nm pores affecting the methane endowment state were investigated respectively, and from the perspective of the heat of adsorption and energy, the concept of the three-phase transition of methane was proposed, and explore the change of the pore spacing affecting the endowment state of methane from the solid state pore to the gas state pore. The results provide new ideas for the in-depth study of gas storage in tectonic coal reservoirs in Guizhou Province.

19.
J Med Syst ; 48(1): 52, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761230

ABSTRACT

This study aimed to analyze the current landscape of ChatGPT application in the medical field, assessing the current collaboration patterns and research topic hotspots to understand the impact and trends. By conducting a search in the Web of Science, we collected literature related to the applications of ChatGPT in medicine, covering the period from January 1, 2000 up to January 16, 2024. Bibliometric analyses were performed using CiteSpace (V6.2., Drexel University, PA, USA) and Microsoft Excel (Microsoft Corp.,WA, USA) to map the collaboration among countries/regions, the distribution of institutions and authors, and clustering of keywords. A total of 574 eligible articles were included, with 97.74% published in 2023. These articles span various disciplines, particularly in Health Care Sciences Services, with extensive international collaboration involving 73 countries. In terms of countries/regions studied, USA, India, and China led in the number of publications. USA ot only published nearly half of the total number of papers but also exhibits a highest collaborative capability. Regarding the co-occurrence of institutions and scholars, the National University of Singapore and Harvard University held significant influence in the cooperation network, with the top three authors in terms of publications being Wiwanitkit V (10 articles), Seth I (9 articles), Klang E (7 articles), and Kleebayoon A (7 articles). Through keyword clustering, the study identified 9 research theme clusters, among which "digital health"was not only the largest in scale but also had the most citations. The study highlights ChatGPT's cross-disciplinary nature and collaborative research in medicine, showcasing its growth potential, particularly in digital health and clinical decision support. Future exploration should examine the socio-economic and cultural impacts of this trend, along with ChatGPT's specific technical uses in medical practice.


Subject(s)
Bibliometrics , Humans
20.
Food Chem ; 452: 139614, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38744132

ABSTRACT

Soy protein isolate (SPI)-polyphenol conjugates were produced by grafting SPI individually with curcumin, naringenin, and catechin. The resulting conjugates showed better emulsifying properties and were used to develop active films containing rose essential oil. The effect of conjugation on the physicochemical and mechanical properties of these emulsion-based films was evaluated. The results showed that the barrier and mechanical properties of the films were improved when the SPI-polyphenol conjugates were used to emulsify the essential oil; in particular, the SPI-curcumin conjugate showed significant improvement. The improvements on the water vapor and oxygen barrier properties in the films were attributed to the formation of compact structure. Emulsion-based films stabilized by SPI-polyphenol conjugates showed antioxidant and antibacterial activities. They also demonstrated an ability to extend the shelf life of cherry tomatoes, as indicated by better preservation of weight, firmness, and ascorbic acid content.

SELECTION OF CITATIONS
SEARCH DETAIL
...