Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Circulation ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726666

ABSTRACT

BACKGROUND: G protein-coupled receptors play a critical role in atrial fibrillation (AF). Spexin is a novel ligand of galanin receptors (GALRs). In this study, we investigated the regulation of spexin and GALRs on AF and the underlying mechanisms. METHODS: Global spexin knockout (SPX-KO) and cardiomyocyte-specific GALRs knockout (GALR-cKO) mice underwent burst pacing electrical stimulation. Optical mapping was used to determine atrial conduction velocity and action potential duration. Atrial myocyte action potential duration and inward rectifying K+ current (IK1) were recorded using whole-cell patch clamps. Isolated cardiomyocytes were stained with Fluo-3/AM dye, and intracellular Ca2+ handling was examined by CCD camera. A mouse model of AF was established by Ang-II (angiotensin II) infusion. RESULTS: Spexin plasma levels in patients with AF were lower than those in subjects without AF, and knockout of spexin increased AF susceptibility in mice. In the atrium of SPX-KO mice, potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) and sarcolipin (SLN) were upregulated; meanwhile, IK1 current was increased and Ca2+ handling was impaired in isolated atrial myocytes of SPX-KO mice. GALR2-cKO mice, but not GALR1-cKO and GALR3-cKO mice, had a higher incidence of AF, which was associated with higher IK1 current and intracellular Ca2+ overload. The phosphorylation level of CREB (cyclic AMP responsive element binding protein 1) was upregulated in atrial tissues of SPX-KO and GALR2-cKO mice. Chromatin immunoprecipitation confirmed the recruitment of p-CREB to the proximal promoter regions of KCNJ2 and SLN. Finally, spexin treatment suppressed CREB signaling, decreased IK1 current and intracellular Ca2+ overload, which thus reduced the inducibility of AF in Ang-II-infused mice. CONCLUSIONS: Spexin reduces atrial fibrillation susceptibility by inhibiting CREB phosphorylation and thus downregulating KCNJ2 and SLN transcription by GALR2 receptor. The spexin/GALR2/CREB signaling pathway represents a novel therapeutic avenue in the development of agents against atrial fibrillation.

2.
Circ Res ; 132(2): 208-222, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656967

ABSTRACT

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Subject(s)
Adaptor Proteins, Signal Transducing , Reperfusion Injury , Tumor Suppressor Protein p53 , Animals , Mice , Apoptosis/physiology , Hypoxia/metabolism , Ischemia/metabolism , Karyopherins , Myocytes, Cardiac/metabolism , Reperfusion Injury/metabolism , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/genetics
3.
Gene Ther ; 30(1-2): 142-149, 2023 02.
Article in English | MEDLINE | ID: mdl-35644811

ABSTRACT

Dystrophin deficiency due to genetic mutations causes cardiac abnormalities in Duchenne's muscular dystrophy. Dystrophin is also shown to be downregulated in conventional failing hearts. Whether restoration of dystrophin expression possesses any therapeutic potential for conventional heart failure (HF) remains to be examined. HF mouse model was generated by transverse aortic constriction (TAC). In vivo activation of dystrophin transcription was achieved by tail-vein injection of adeno-associated virus 9 carrying CRISPR/dCas system for dystrophin. We found that activation of dystrophin expression in TAC mice significantly reduced the susceptibility to arrhythmia of TAC mice and the mortality rate. We further demonstrated that over-expression of dystrophin increased cardiac conduction of hearts in TAC mice by optical mapping evaluation. Activation of dystrophin expression also increased peak sodium current in isolated ventricular myocytes from hearts of TAC mice as recorded by the patch-clamp technique. Immunoblotting and immunofluorescence showed that increased dystrophin transcription restored the membrane distribution of Nav1.5 in the hearts of TAC mice. In summary, correction of dystrophin downregulation by the CRISPR-dCas9 system reduced the susceptibility to arrhythmia of conventional HF mice through restoring Nav1.5 membrane distribution. This study paved the way to develop a new therapeutic strategy for HF-related ventricular arrhythmia.


Subject(s)
Heart Failure , Muscular Dystrophy, Duchenne , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy
4.
Front Cardiovasc Med ; 9: 1011429, 2022.
Article in English | MEDLINE | ID: mdl-36337862

ABSTRACT

Some studies have shown that sodium-glucose cotransporter (SGLT) 2 inhibitors can definitively attenuate the occurrence of cardiovascular diseases such as heart failure (HF), dilated cardiomyopathy (DCM), and myocardial infarction. With the development of research, SGLT2 inhibitors can also reduce the risk of arrhythmias. So in this review, how SGLT2 inhibitors play a role in reducing the risk of arrhythmia from the perspective of electrical remodeling and structural remodeling are explored and then the possible mechanisms are discussed. Specifically, we focus on the role of SGLT2 inhibitors in Na+ and Ca2 + homeostasis and the transients of Na+ and Ca2 +, which could affect electrical remodeling and then lead to arrythmia. We also discuss the protective role of SGLT2 inhibitors in structural remodeling from the perspective of fibrosis, inflammation, oxidative stress, and apoptosis. Ultimately, it is clear that SGLT2 inhibitors have significant benefits on cardiovascular diseases such as HF, myocardial hypertrophy and myocardial infarction. It can be expected that SGLT2 inhibitors can reduce the risk of arrhythmia.

5.
Front Pharmacol ; 13: 988408, 2022.
Article in English | MEDLINE | ID: mdl-36313361

ABSTRACT

Background: Recent clinical trials indicate that sodium-glucose cotransporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in myocardial infarction (MI) patients, but the underlying mechanisms remain unknown. As arrhythmia often occurs during myocardial infarction, it is the main cause of death. Objective: The purpose of this study was to investigate the influence of empagliflozin (EMPA), an SGLT2 inhibitor, on cardiac electrophysiological remodeling and arrhythmia susceptibility of myocardial infarction mice. Methods: ECG was obtained from mice 1 week after MI to determine the QT interval. In an electrophysiological study and optical mapping was performed to evaluate the function of EMPA and underlying mechanisms of post-myocardial-infarction in mice. Results: EMPA treatment significantly reduced the QT interval of MI mice (MI + EMPA 50.24 ms vs. MI 64.68 ms). The membrane potential and intracellular Ca [Cai] were mapped from 13 MI hearts and five normal hearts using an optical mapping technique. A dynamic pacing protocol was used to determine action potential duration and [Cai] at baseline and after EMPA (10 umol/L) infusion. EMPA perfusion did not change the APD80 and CaT80 in normal ventricles while shortening them in an infarct zone, bordering zone, and remote zone of MI hearts at 200 ms, 150 ms, 120 ms, and 100 ms pacing cycle length. The conduction velocity of infarcted ventricles was 0.278 m/s and 0.533 m/s in normal ventricles at baseline (p < 0.05). After EMPA administration, the conduction velocity of infarcted ventricles increased to 0.363 m/s, whereas no significant changes were observed in normal ventricles. The action potential rise time, CaT rise time, and CaT tau time were improved after EMPA perfusion in infarcted ventricles, whereas no significant changes were observed in normal ventricles. EMPA decreases early afterdepolarizations premature ventricular beats, and ventricular fibrillation (VF) in infarcted ventricles. The number of phase singularities (baseline versus EMPA, 6.26 versus 3.25), dominant frequency (20.52 versus 10.675 Hz), and ventricular fibrillation duration (1.072 versus 0.361 s) during ventricular fibrillation in infarcted ventricles were all significantly decreased by EMPA. Conclusion: Treatment with EMPA improved post-MI electrophysiological remodeling and decreased substrate for VF of MI mice. The inhibitors of SGLT2 may be a new class of agents for the prevention of ventricle arrhythmia after chronic MI.

6.
J Adv Res ; 39: 275-289, 2022 07.
Article in English | MEDLINE | ID: mdl-35777912

ABSTRACT

INTRODUCTION: The principal voltage-gated Na+ channel, NaV1.5 governs heart excitability and conduction. NaV1.5 dysregulation is responsible for ventricular arrhythmias and subsequent sudden cardiac death (SCD) in post-infarct hearts. The transcription factor Meis1 performs a significant role in determining differentiation fate and regenerative capability of cardiomyocytes. However, the functions of Meis1 in ischemic arrhythmias following myocardial infarction (MI) are still largely undefined. OBJECTIVES: Here we aimed to study whether Meis1 could act as a key regulator to mediate cardiac Na+ channel and its underlying mechanisms. METHODS: Heart-specific Meis1 overexpression was established by AAV9 virus injection in C57BL/6 mice. The QRS duration, the incidence of ventricular arrhythmias and cardiac conduction velocity were evaluated by ECG, programmed electrical stimulation and optical mapping techniques respectively. The conventional patch clamp technique was performed to explore the INa characteristics of isolated mouse ventricular myocytes. In vitro, Meis1 was also overexpressed in hypoxic-treated neonatal cardiomyocytes. The analysis of immunoblotting and immunofluorescence were used to detect the changes in the expression of NaV1.5 in each group. RESULTS: We found that forced expression of Meis1 rescued the prolongation of QRS complex, produced anti-arrhythmic activity and improved epicardial conduction velocity in infarcted mouse hearts. In terms of mechanisms, cardiac electrophysiological changes of MI mice can be ameliorated by the recovery of Meis1, which is characterized by the restoration of INa current density and NaV1.5 expression level of cardiomyocytes in the marginal zone of MI mouse hearts. Furthermore, in vitro studies showed that Meis1 was also able to rescue hypoxia-induced decreased expression and dysfunction of NaV1.5 in ventricular myocytes. We further revealed that E3 ubiquitin ligase CDC20 led to the ubiquitination and degradation of Meis1, which blocked the transcriptional regulation of SCN5A by Meis1 and ultimately led to the electrophysiological remodeling in ischemic-hypoxic cardiomyocytes. CONCLUSION: CDC20 mediates ubiquitination of Meis1 to govern the transcription of SCN5A and cardiac electrical conduction in mouse cardiomyocytes. This finding uncovers a new mechanism of NaV1.5 dysregulation in infarcted heart, and provides new therapeutic strategies for malignant arrhythmias and sudden cardiac death following MI.


Subject(s)
Myeloid Ecotropic Viral Integration Site 1 Protein , Myocardial Infarction , Transcription Factors , Animals , Arrhythmias, Cardiac , Death, Sudden, Cardiac , Mice , Mice, Inbred C57BL , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism
7.
Commun Biol ; 5(1): 716, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851102

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) injury is a pathological process that seriously affects the health of patients with coronary artery disease. Long non-coding RNAs (lncRNAs) represents a new class of regulators of diverse biological processes and disease conditions, the study aims to discover the pivotal lncRNA in MI/R injury. The microarray screening identifies a down-regulated heart-enriched lncRNA-CIRPIL (Cardiac ischemia reperfusion associated p53 interacting lncRNA, lncCIRPIL) from the hearts of I/R mice. LncCIRPIL inhibits apoptosis of cultured cardiomyocytes exposed to anoxia/reoxygenation (A/R). Cardiac-specific transgenic overexpression of lncCIRPIL alleviates I/R injury in mice, while knockout of lncCIRPIL exacerbates cardiac I/R injury. LncCIRPIL locates in the cytoplasm and physically interacts with p53, which leads to the cytoplasmic sequestration and the acceleration of ubiquitin-mediated degradation of p53 triggered by E3 ligases CHIP, COP1 and MDM2. p53 overexpression abrogates the protective effects of lncCIRPIL. Notably, the human fragment of conserved lncCIRPIL mimics the protective effects of the full-length lncCIRPIL on cultured human AC16 cells. Collectively, lncCIRPIL exerts its cardioprotective action via sequestering p53 in the cytoplasm and facilitating its ubiquitin-mediated degradation. The study highlights a unique mechanism in p53 signal pathway and broadens our understanding of the molecular mechanisms of MI/R injury.


Subject(s)
Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Cytoplasm , Humans , Mice , Myocardial Reperfusion Injury/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitins/metabolism
8.
Pharmacol Res ; 182: 106284, 2022 08.
Article in English | MEDLINE | ID: mdl-35661710

ABSTRACT

Pathological cardiac hypertrophy is a process characterized by significant disturbance of protein turnover. Cullin-associated and Neddylation-dissociated 1 (CAND1) acts as a coordinator to modulate substrate protein degradation by promoting the formation of specific cullin-based ubiquitin ligase 3 complex in response to substrate accumulation, which thereby facilitate the maintaining of normal protein homeostasis. Accumulation of calcineurin is critical in the pathogenesis of cardiac hypertrophy and heart failure. However, whether CAND1 titrates the degradation of hypertrophy related protein eg. calcineurin and regulates cardiac hypertrophy remains unknown. Therefore, we aim to explore the role of CAND1 in cardiac hypertrophy and heart failure and the underlying molecular mechanism. Here, we found that the protein level of CAND1 was increased in cardiac tissues from heart failure (HF) patients and TAC mice, whereas the mRNA level did not change. CAND1-KO+ /- aggravated TAC-induced cardiac hypertrophic phenotypes; in contrast, CAND1-Tg attenuated the maladaptive cardiac remodeling. At the molecular level, CAND1 overexpression downregulated, whereas CAND1-KO+ /- or knockdown upregulated calcineurin expression at both in vivo and in vitro conditions. Mechanistically, CAND1 overexpression favored the assembly of Cul1/atrogin1/calcineurin complex and rendered the ubiquitination and degradation of calcineurin. Notably, CAND1 deficiency-induced hypertrophic phenotypes were partially rescued by knockdown of calcineurin, and application of exogenous CAND1 prevented TAC-induced cardiac hypertrophy. Taken together, our findings demonstrate that CAND1 exerts a protective effect against cardiac hypertrophy and heart failure partially by inducing the degradation of calcineurin.


Subject(s)
Calcineurin , Cardiomegaly , Cullin Proteins , Heart Failure , Animals , Calcineurin/metabolism , Cardiomegaly/genetics , Cullin Proteins/chemistry , Cullin Proteins/genetics , Cullin Proteins/metabolism , Heart Failure/genetics , Humans , Mice , Transcription Factors
9.
Acta Pharmacol Sin ; 43(2): 307-315, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33911193

ABSTRACT

Interleukin-17A (IL-17), a potent proinflammatory cytokine, has been shown to participate in cardiac electrical disorders. Diabetes mellitus is an independent risk factor for ventricular arrhythmia. In this study, we investigated the role of IL-17 in ventricular arrhythmia of diabetic mice. Diabetes was induced in both wild-type and IL-17 knockout mice by intraperitoneal injection of streptozotocin (STZ). High-frequency electrical stimuli were delivered into the right ventricle to induce ventricular arrhythmias. We showed that the occurrence rate of ventricular tachycardia was significantly increased in diabetic mice, which was attenuated by IL-17 knockout. We conducted optical mapping on perfused mouse hearts and found that cardiac conduction velocity (CV) was significantly decreased, and action potential duration (APD) was prolonged in diabetic mice, which were mitigated by IL-17 knockout. We performed whole-cell patch clamp recordings from isolated ventricular myocytes, and found that the densities of Ito, INa and ICa,L were reduced, the APDs at 50% and 90% repolarization were increased, and early afterdepolarization (EAD) was markedly increased in diabetic mice. These alterations were alleviated by the knockout of IL-17. Moreover, knockout of IL-17 alleviated the downregulation of Nav1.5 (the pore forming subunit of INa), Cav1.2 (the main component subunit of ICa,L) and KChIP2 (potassium voltage-gated channel interacting protein 2, the regulatory subunit of Ito) in the hearts of diabetic mice. The expression of NF-κB was significantly upregulated in the hearts of diabetic mice, which was suppressed by IL-17 knockout. In neonatal mouse ventricular myocytes, knockdown of NF-κB significantly increased the expression of Nav1.5, Cav1.2 and KChIP2. These results imply that IL-17 may represent a potential target for the development of agents against diabetes-related ventricular arrhythmias.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/metabolism , Interleukin-17/metabolism , NF-kappa B/metabolism , Ventricular Remodeling , Animals , Blotting, Western , Gene Knockout Techniques , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction
10.
Acta Pharmacol Sin ; 42(11): 1780-1789, 2021 11.
Article in English | MEDLINE | ID: mdl-33589793

ABSTRACT

Interleukin-17 (IL-17), also called IL-17A, is an important regulator of cardiac diseases, but its role in calcium-related cardiac dysfunction remains to be explored. Thus, we investigated the influence of IL-17 on calcium handling process and its contribution to the development of heart failure. Mice were subjected to transaortic constriction (TAC) to induce heart failure. In these mice, the levels of IL-17 in the plasma and cardiac tissue were significantly increased compared with the sham group. In 77 heart failure patients, the plasma level of IL-17 was significantly higher than 49 non-failing subjects, and was negatively correlated with cardiac ejection fraction and fractional shortening. In IL-17 knockout mice, the shortening of isolated ventricular myocytes was increased compared with that in wild-type mice, which was accompanied by significantly increased amplitude of calcium transient and the upregulation of SERCA2a and Cav1.2. In cultured neonatal cardiac myocytes, treatment of with IL-17 (0.1, 1 ng/mL) concentration-dependently suppressed the amplitude of calcium transient and reduced the expression of SERCA2a and Cav1.2. Furthermore, IL-17 treatment increased the expression of the NF-κB subunits p50 and p65, whereas knockdown of p50 reversed the inhibitory effects of IL-17 on SERCA2a and Cav1.2 expression. In mice with TAC-induced mouse heart, IL-17 knockout restored the expression of SERCA2a and Cav1.2, increased the amplitude of calcium transient and cell shortening, and in turn improved cardiac function. In addition, IL-17 knockout attenuated cardiac hypertrophy with inhibition of calcium-related signaling pathway. In conclusion, upregulation of IL-17 impairs cardiac function through NF-κB-mediated disturbance of calcium handling and cardiac remodeling. Inhibition of IL-17 represents a potential therapeutic strategy for the treatment of heart failure.


Subject(s)
Calcium Channels, L-Type/biosynthesis , Heart Failure/metabolism , Interleukin-17/biosynthesis , NF-kappa B/biosynthesis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , Up-Regulation/physiology , Animals , Animals, Newborn , Calcium Channels, L-Type/genetics , Cell Line , Cells, Cultured , Gene Expression , Heart Failure/genetics , Heart Failure/pathology , Humans , Interleukin-17/deficiency , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
11.
Nat Commun ; 12(1): 522, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483496

ABSTRACT

Cardiac ischemia-reperfusion (I/R) injury is a pathological process resulting in cardiomyocyte death. The present study aims to evaluate the role of the long noncoding RNA Cardiac Injury-Related Bclaf1-Inhibiting LncRNA (lncCIRBIL) on cardiac I/R injury and delineate its mechanism of action. The level of lncCIRBIL is reduced in I/R hearts. Cardiomyocyte-specific transgenic overexpression of lncCIRBIL reduces infarct area following I/R injury. Knockout of lncCIRBIL in mice exacerbates cardiac I/R injury. Qualitatively, the same results are observed in vitro. LncCIRBIL directly binds to BCL2-associated transcription factor 1 (Bclaf1), to inhibit its nuclear translocation. Cardiomyocyte-specific transgenic overexpression of Bclaf1 worsens, while partial knockout of Bclaf1 mitigates cardiac I/R injury. Meanwhile, partial knockout of Bclaf1 abrogates the detrimental effects of lncCIRBIL knockout on cardiac I/R injury. Collectively, the protective effect of lncCIRBIL on I/R injury is accomplished by inhibiting the nuclear translocation of Bclaf1. LncCIRBIL and Bclaf1 are potential therapeutic targets for ischemic cardiac disease.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation , Myocardial Reperfusion Injury/genetics , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Active Transport, Cell Nucleus/genetics , Animals , Animals, Newborn , Cell Nucleus/genetics , Cells, Cultured , Male , Mice , Mice, Knockout , Mice, Transgenic , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Repressor Proteins/metabolism
12.
Basic Res Cardiol ; 115(2): 9, 2020 01 04.
Article in English | MEDLINE | ID: mdl-31900593

ABSTRACT

Ventricular arrhythmia is the most common cause of sudden cardiac death in patients with myocardial infarction (MI). Fibroblast growth factor 21 (FGF21) has been shown to play an important role in cardiovascular and metabolic diseases. However, the effects of FGF21 on ventricular arrhythmias following MI have not been addressed yet. The present study was conducted to investigate the pharmacological action of FGF21 on ventricular arrhythmias after MI. Adult male mice were administrated with or without recombinant human basic FGF21 (rhbFGF21), and the susceptibility to arrhythmias was assessed by programmed electrical stimulation and optical mapping techniques. Here, we found that rhbFGF21 administration reduced the occurrence of ventricular tachycardia (VT), improved epicardial conduction velocity and shorted action potential duration at 90% (APD90) in infarcted mouse hearts. Mechanistically, FGF21 may improve cardiac electrophysiological remodeling as characterized by the decrease of INa and IK1 current density in border zone of infarcted mouse hearts. Consistently, in vitro study also demonstrated that FGF21 may rescue oxidant stress-induced dysfunction of INa and IK1 currents in cultured ventricular myocytes. We further found that oxidant stress-induced down-regulation of early growth response protein 1 (EGR1) contributed to INa and IK1 reduction in post-infarcted hearts, and FGF21 may recruit EGR1 into the SCN5A and KCNJ2 promoter regions to up-regulate NaV1.5 and Kir2.1 expression at transcriptional level. Moreover, miR-143 was identified as upstream of EGR1 and mediated FGF21-induced EGR1 up-regulation in cardiomyocytes. Collectively, rhbFGF21 administration effectively suppressed ventricular arrhythmias in post-infarcted hearts by regulating miR-143-EGR1-NaV1.5/Kir2.1 axis, which provides novel therapeutic strategies for ischemic arrhythmias in clinics.


Subject(s)
Anti-Arrhythmia Agents/administration & dosage , Early Growth Response Protein 1/metabolism , Fibroblast Growth Factors/administration & dosage , Heart Conduction System/drug effects , Heart Rate/drug effects , MicroRNAs/metabolism , Myocardial Infarction/drug therapy , Myocardium/metabolism , Tachycardia, Ventricular/prevention & control , Action Potentials/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Early Growth Response Protein 1/genetics , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Recombinant Proteins/administration & dosage , Signal Transduction , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology
13.
Hypertension ; 74(4): 833-842, 2019 10.
Article in English | MEDLINE | ID: mdl-31446800

ABSTRACT

Heart failure (HF) is a major cause of morbidity and mortality in patients with various cardiovascular diseases. Restoration of cardiac function is critical in improving the clinical outcomes of patients with HF. Long noncoding RNAs are widely involved in the development of multiple cardiac diseases, whereas their role in regulating cardiac function remains unclear. In this study, we found that the expression of long noncoding RNA-DACH1 (dachshund homolog 1) was upregulated in the failing hearts of mice and human. We tested the hypothesis that the intronic long noncoding RNA of DACH1 (LncDACH1) can participate in the regulation of cardiac function and HF. Transgenic overexpression of LncDACH1 in the cardiac myocytes of mice led to impaired cardiac function, reduced calcium transient and cell shortening, and decreased SERCA2a (sarcoplasmic reticulum calcium ATPase 2a) protein expression. In contrast, conditional knockout of LncDACH1 in cardiac myocytes resulted in increased calcium transient, cell shortening, SERCA2a protein expression, and improved cardiac function of transverse aortic constriction induced HF mice. The same qualitative data were obtained by overexpression or knockdown of LncDACH1 with adenovirus carrying LncDACH1 or its siRNA. Moreover, therapeutic administration of adenovirus carrying LncDACH1 siRNA to transverse aortic constriction mice abolished the development of HF. Mechanistically, LncDACH1 directly binds to SERCA2a. Overexpression of LncDACH1 augments the ubiquitination of SERCA2a. LncDACH1 upregulation impairs cardiac function by promoting ubiquitination-related degradation of SERCA2a.


Subject(s)
Eye Proteins/metabolism , Heart Failure/metabolism , Heart/physiology , RNA, Long Noncoding/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Transcription Factors/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Eye Proteins/genetics , Female , Gene Expression Regulation , Heart Failure/genetics , Humans , Male , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Transcription Factors/genetics
14.
Eur J Pharmacol ; 857: 172444, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31185218

ABSTRACT

Studies demonstrated that the incidence of atrial fibrillation is significantly increased in patients with diabetes mellitus. Increase of late sodium current (INaL) has been associated with atrial arrhythmias. However, the role of INaL in the setting of atrial fibrillation in diabetes mellitus remained unknown. In this study, we investigated the alteration of INaL in the atria of diabetic mice and the therapeutic effect of its inhibitor (GS967) on the susceptibility of atrial fibrillation. The whole-cell patch-clamp technique was used to detect single cell electrical activities. The results showed that the density of INaL in diabetic cardiomyocytes was larger than that of the control cells at the holding potential of -100 mV. The action potential duration at both 50% and 90% repolarization, APD50 and APD90, respectively, was markedly increased in diabetic mice than in controls. GS967 application inhibited INaL and shortened APD of diabetic mice. High-frequency electrical stimuli were used to induce atrial arrhythmias. We found that the occurrence rate of atrial fibrillation was significantly increased in diabetic mice, which was alleviated by the administration of GS967. In GS967-treated diabetic mice, the INaL current density was reduced and APD was shortened. In conclusion, the susceptibility to atrial fibrillation was increased in diabetic mice, which is associated with the increased late sodium current and the consequent prolongation of action potential. Inhibition of INaL by GS967 is beneficial against the occurrence of atrial fibrillation in diabetic mice.


Subject(s)
Atrial Fibrillation/complications , Atrial Fibrillation/physiopathology , Diabetes Mellitus, Experimental/complications , Electrophysiological Phenomena , Sodium/metabolism , Action Potentials/drug effects , Animals , Atrial Fibrillation/metabolism , Electrophysiological Phenomena/drug effects , Male , Mice , Mice, Inbred C57BL , Pyridines/pharmacology , Sodium Channel Blockers/pharmacology , Triazoles/pharmacology
15.
J Cardiovasc Electrophysiol ; 29(10): 1436-1443, 2018 10.
Article in English | MEDLINE | ID: mdl-30016000

ABSTRACT

INTRODUCTION: Deficiency of testosterone was associated with the susceptibility of atrial fibrillation (AF). Angiotensin-II (AngII) receptor antagonists were shown to reduce AF by improving atrial electrical remodeling. This study investigated the effects and mechanism of valsartan, an AngII receptor antagonist, on the susceptibility to AF with testosterone deficiency. METHODS AND RESULTS: Five-week-old male ICR mice were castrated and valsartan was administered orally (50 mg/kg/d). High-frequency electrical stimulation method was used to induce atrial arrhythmia. Patch-clamp technique was used for recording action potential duration (APD), transient outward potassium current ( I to ), sustained outward potassium current ( I ksus ), and late sodium current ( I Na-L ). Optical mapping technique was used to examine atrial conduction velocity (CV). The expression of connexin40 (Cx40) and Cx43 were detected by Western blot analysis. The occurrence rate of AF was significantly increased in castrated mice and APDs measured at 50% and 90% repolarization were markedly prolonged in castrated mice than controls, which were alleviated by the administration of valsartan. Valsartan suppressed the increase of INa-L and rescued the reduction of Ito and Iksus in castrated mice. The left atrial CV in castrated mice was decreased and the expression of Cx43 reduced than controls, which were restored after valsartan treatment. CONCLUSIONS: Valsartan reduced the susceptibility of AF in castrated mice, which may be related to the inhibition of action potential prolongation and improvement of atrial conduction impairment. This study indicates that valsartan may represent a useful agent for the prevention of AF pathogenesis in elderly male patients.


Subject(s)
Action Potentials/drug effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/prevention & control , Heart Conduction System/drug effects , Heart Rate/drug effects , Orchiectomy , Valsartan/pharmacology , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Cardiac Pacing, Artificial , Cells, Cultured , Connexin 43/metabolism , Disease Models, Animal , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Male , Mice, Inbred ICR , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Potassium/metabolism , Sodium/metabolism , Testosterone/deficiency , Time Factors
16.
J Mol Cell Cardiol ; 115: 64-72, 2018 02.
Article in English | MEDLINE | ID: mdl-29305939

ABSTRACT

Interleukin 17 (IL-17) plays an important role in the pathogenesis of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-17 in the development of diabetic cardiomyopathy and the underlying mechanisms. The level of IL-17 increased in both the serum and cardiac tissue of diabetic mice. Knockout of IL-17 improved cardiac function of diabetic mice induced by streptozotocin (STZ), and significantly alleviated interstitial fibrosis as manifested by reduced collagen mRNA expression and collagen deposition evaluated by Masson's staining. High glucose treatment induced collagen production were abolished in cultured IL-17 knockout cardiac fibroblasts (CFs). The levels of long noncoding RNA-AK081284 were increased in the CFs treated with high glucose or IL-17. Knockout of IL-17 abrogated high glucose induced upregulation of AK081284. Overexpression of AK081284 in cultured CFs promoted the production of collagen and TGFß1. Both high glucose and IL-17 induced collagen and TGFß1 production were mitigated by the application of the siRNA for AK081284. In summary, deletion of IL-17 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The IL-17/AK081284/TGFß1 signaling pathway mediates high glucose induced collagen production. This study indicates the therapeutic potential of IL-17 inhibition on diabetic cardiomyopathy disease associated with fibrosis.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Heart Function Tests , Interleukin-17/metabolism , Myocardium/metabolism , Myocardium/pathology , RNA, Long Noncoding/metabolism , Animals , Cell Proliferation , Cells, Cultured , Collagen/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/diagnostic imaging , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Glucose/toxicity , Interleukin-17/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Up-Regulation
17.
Heart Rhythm ; 14(7): 1073-1080, 2017 07.
Article in English | MEDLINE | ID: mdl-28185917

ABSTRACT

BACKGROUND: The incidence of atrial fibrillation (AF) is correlated with decreased levels of testosterone in elderly men. Late sodium current may exert a role in AF pathogenesis. OBJECTIVE: The purpose of this study was to explore the effect of testosterone deficiency on AF susceptibility and the therapeutic effect of late sodium current inhibitors in mice. METHODS: Male ICR mice (5 weeks old) were castrated to establish a testosterone deficiency model. One month after castration, dihydrotestosterone 5 mg/kg was administered subcutaneously for 2 months. Serum total testosterone level was assessed by enzyme-linked immunosorbent assay. High-frequency electrical stimulation was used to induce atrial arrhythmias. Whole-cell patch-clamp technique was used to for single-cell electrophysiologic study. RESULTS: Serum dihydrotestosterone levels of castration mice declined significantly but recovered with administration of exogenous dihydrotestosterone. In comparison with sham mice, the number of AF episodes significantly increased by 13.5-fold, AF rate increased by 3.75-fold, and AF duration prolonged in castrated mice. Dihydrotestosterone administration alleviated the occurrence of AF. Action potential duration at both 50% and 90% repolarization were markedly increased in castrated mice compared to sham controls. The late sodium current was enhanced in castrated male mice. These alterations were alleviated by treatment with dihydrotestosterone. Systemic application of the INa-L inhibitors ranolazine, eleclazine, and GS967 inhibited the occurrence of AF in castrated mice. CONCLUSION: Testosterone deficiency contributed to the increased late sodium current, prolonged action potential repolarization, and increased susceptibility to AF. Blocking of late sodium current is beneficial against the occurrence of AF in castrated mice.


Subject(s)
Aging/metabolism , Atrial Fibrillation , Dihydrotestosterone/pharmacology , Orchiectomy/adverse effects , Sodium Channel Blockers/pharmacology , Testosterone , Action Potentials/physiology , Androgens/pharmacology , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/metabolism , Atrial Fibrillation/therapy , Male , Mice , Models, Animal , Sodium Channels/metabolism , Testosterone/deficiency , Testosterone/metabolism , Treatment Outcome
18.
Sci Rep ; 6: 23010, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26972749

ABSTRACT

Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFß1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFß1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis.


Subject(s)
Diabetic Cardiomyopathies/genetics , Interleukin-6/genetics , MicroRNAs/genetics , Myocardium/metabolism , Signal Transduction/genetics , Transforming Growth Factor beta1/genetics , Animals , Animals, Newborn , Blotting, Western , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Diabetic Cardiomyopathies/chemically induced , Diabetic Cardiomyopathies/diagnostic imaging , Echocardiography , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis/genetics , Gene Expression/drug effects , Glucose/pharmacology , Heart/physiopathology , Interleukin-6/blood , Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Reverse Transcriptase Polymerase Chain Reaction , Streptozocin , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...