Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 234(0): 109-128, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35171169

ABSTRACT

Methanotrophic bacteria utilize methane monooxygenase (MMO) to carry out the first step in metabolizing methane. The soluble enzymes employ a hydroxylase component (sMMOH) with a nonheme diiron active site that activates O2 and generates a powerful oxidant capable of converting methane to methanol. It is proposed that the diiron(II) center in the reduced enzyme reacts with O2 to generate a diferric-peroxo intermediate called P that then undergoes O-O cleavage to convert into a diiron(IV) derivative called Q, which carries out methane hydroxylation. Most (but not all) of the spectroscopic data of Q accumulated by various groups to date favor the presence of an FeIV2(µ-O)2 unit with a diamond core. The Que lab has had a long-term interest in making synthetic analogs of iron enzyme intermediates. To this end, the first crystal structure of a complex with a FeIIIFeIV(µ-O)2 diamond core was reported in 1999, which exhibited an Fe⋯Fe distance of 2.683(1) Å. Now more than 20 years later, a complex with an FeIV2(µ-O)2 diamond core has been synthesized in sufficient purity to allow diffraction-quality crystals to be grown. Its crystal structure has been solved, revealing an Fe⋯Fe distance of 2.711(4) Å for comparison with structural data for related complexes with lower iron oxidation states.


Subject(s)
Iron , Oxygen , Iron/chemistry , Methane , Oxidation-Reduction , Oxygen/chemistry , Spectrum Analysis
2.
Chem Sci ; 6(5): 2909-2921, 2015 May 01.
Article in English | MEDLINE | ID: mdl-26417426

ABSTRACT

High-valent iron(IV)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(µ-O)FeIV(OH)(L)]3+, 2) iron(IV) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2-10 K are dominated by a broad positive C-term band between 12000 and 18000 cm-1. As the temperature increases up to ~20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV=O site is not significantly perturbed by the binding to another iron(IV) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C-H bond activation and O-atom transfer.

3.
J Am Chem Soc ; 136(4): 1545-58, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24380398

ABSTRACT

Previous efforts to model the diiron(IV) intermediate Q of soluble methane monooxygenase have led to the synthesis of a diiron(IV) TPA complex, 2, with an O=Fe(IV)-O-Fe(IV)-OH core that has two ferromagnetically coupled Sloc = 1 sites. Addition of base to 2 at -85 °C elicits its conjugate base 6 with a novel O═Fe(IV)-O-Fe(IV)═O core. In frozen solution, 6 exists in two forms, 6a and 6b, that we have characterized extensively using Mössbauer and parallel mode EPR spectroscopy. The conversion between 2 and 6 is quantitative, but the relative proportions of 6a and 6b are solvent dependent. 6a has two equivalent high-spin (Sloc = 2) sites, which are antiferromagnetically coupled; its quadrupole splitting (0.52 mm/s) and isomer shift (0.14 mm/s) match those of intermediate Q. DFT calculations suggest that 6a assumes an anti conformation with a dihedral O═Fe-Fe═O angle of 180°. Mössbauer and EPR analyses show that 6b is a diiron(IV) complex with ferromagnetically coupled Sloc = 1 and Sloc = 2 sites to give total spin St = 3. Analysis of the zero-field splittings and magnetic hyperfine tensors suggests that the dihedral O═Fe-Fe═O angle of 6b is ∼90°. DFT calculations indicate that this angle is enforced by hydrogen bonding to both terminal oxo groups from a shared water molecule. The water molecule preorganizes 6b, facilitating protonation of one oxo group to regenerate 2, a protonation step difficult to achieve for mononuclear Fe(IV)═O complexes. Complex 6 represents an intriguing addition to the handful of diiron(IV) complexes that have been characterized.


Subject(s)
Iron/chemistry , Oxygen/chemistry , Oxygenases/chemistry , Quantum Theory , Electron Spin Resonance Spectroscopy , Iron/metabolism , Models, Molecular , Molecular Structure , Oxygen/metabolism , Oxygenases/metabolism , Spectrophotometry, Ultraviolet
4.
Proc Natl Acad Sci U S A ; 110(16): 6275-80, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23576760

ABSTRACT

High-valent intermediates of binuclear nonheme iron enzymes are structurally unknown despite their importance for understanding enzyme reactivity. Nuclear resonance vibrational spectroscopy combined with density functional theory calculations has been applied to structurally well-characterized high-valent mono- and di-oxo bridged binuclear Fe model complexes. Low-frequency vibrational modes of these high-valent diiron complexes involving Fe motion have been observed and assigned. These are independent of Fe oxidation state and show a strong dependence on spin state. It is important to note that they are sensitive to the nature of the Fe2 core bridges and provide the basis for interpreting parallel nuclear resonance vibrational spectroscopy data on the high-valent oxo intermediates in the binuclear nonheme iron enzymes.


Subject(s)
Enzymes/chemistry , Ferric Compounds/chemistry , Models, Chemical , Spectroscopy, Mossbauer/methods , Crystallography, X-Ray , Enzymes/metabolism , Ferric Compounds/metabolism , Molecular Structure , Oxidation-Reduction , Vibration
5.
Inorg Chem ; 52(7): 3976-84, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23496330

ABSTRACT

Complexes 1-OH and 1-F are related complexes that share similar [X-Fe(III)-O-Fe(IV)═O](3+) core structures with a total spin S of ½, which arises from antiferromagnetic coupling of an S = 5/2 Fe(III)-X site and an S = 2 Fe(IV)═O site. EXAFS analysis shows that 1-F has a nearly linear Fe(III)-O-Fe(IV) core compared to that of 1-OH, which has an Fe-O-Fe angle of ~130° due to the presence of a hydrogen bond between the hydroxo and oxo groups. Both complexes are at least 1000-fold more reactive at C-H bond cleavage than 2, a related complex with a [OH-Fe(IV)-O-Fe(IV)═O](4+) core having individual S = 1 Fe(IV) units. Interestingly, 1-F is 10-fold more reactive than 1-OH. This raises an interesting question about what gives rise to the reactivity difference. DFT calculations comparing 1-OH and 1-F strongly suggest that the H-bond in 1-OH does not significantly change the electrophilicity of the reactive Fe(IV)═O unit and that the lower reactivity of 1-OH arises from the additional activation barrier required to break its H-bond in the course of H-atom transfer by the oxoiron(IV) moiety.


Subject(s)
Coordination Complexes/chemistry , Ferric Compounds/chemistry , Hydrogen/chemistry , Oxygen/chemistry , Hydrogen Bonding , Kinetics , Models, Molecular , Molecular Mimicry , Nonheme Iron Proteins/chemistry , Oxidation-Reduction
6.
Inorg Chem ; 51(19): 10080-2, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22984805

ABSTRACT

We report that a novel use of 35 GHz (1)H-ENDOR spectroscopy establishes the presence in 1 of an Fe(IV)═O···H-O-Fe(III) hydrogen bond predicted by density functional theory computations to generate a six-membered-ring core for 1. The hydrogen bond rationalizes the difference in the C-H bond cleavage reactivity between 1 and 4(OCH(3)) (where a CH(3)O group has replaced the HO on the Fe(III) site). This result substantiates the seemingly paradoxical conclusion that the nonheme Fe(IV)═O unit of 1 not only has the electrophilic character required for H-atom abstraction but also retains sufficient nucleophilic character to accept a hydrogen bond from the Fe(III)-OH unit.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Ferric Compounds/chemistry , Iron Compounds/chemistry , Oxygen/chemistry , Hydrogen Bonding , Models, Molecular
7.
Inorg Chem ; 51(4): 2393-402, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22264120

ABSTRACT

The composition of a (µ-oxo)diiron(III) complex coordinated by tris[(3,5-dimethyl-4-methoxy)pyridyl-2-methyl]amine (R(3)TPA) ligands was investigated. Characterization using a variety of spectroscopic methods and X-ray crystallography indicated that the reaction of iron(III) perchlorate, sodium hydroxide, and R(3)TPA affords [Fe(2)(µ-O)(µ-OH)(R(3)TPA)(2)](ClO(4))(3) (2) rather than the previously reported species [Fe(2)(µ-O)(OH)(H(2)O)(R(3)TPA)(2)](ClO(4))(3) (1). Facile conversion of the (µ-oxo)(µ-hydroxo)diiron(III) core of 2 to the (µ-oxo)(hydroxo)(aqua)diiron(III) core of 1 occurs in the presence of water and at low temperature. When 2 is exposed to wet acetonitrile at room temperature, the CH(3)CN adduct is hydrolyzed to CH(3)COO(-), which forms the compound [Fe(2)(µ-O)(µ-CH(3)COO)(R(3)TPA)(2)](ClO(4))(3) (10). The identity of 10 was confirmed by comparison of its spectroscopic properties with those of an independently prepared sample. To evaluate whether or not 1 and 2 are capable of generating the diiron(IV) species [Fe(2)(µ-O)(OH)(O)(R(3)TPA)(2)](3+) (4), which has previously been generated as a synthetic model for high-valent diiron protein oxygenated intermediates, studies were performed to investigate their reactivity with hydrogen peroxide. Because 2 reacts rapidly with hydrogen peroxide in CH(3)CN but not in CH(3)CN/H(2)O, conditions that favor conversion to 1, complex 1 is not a likely precursor to 4. Compound 4 also forms in the reaction of 2 with H(2)O(2) in solvents lacking a nitrile, suggesting that hydrolysis of CH(3)CN is not involved in the H(2)O(2) activation reaction. These findings shed light on the formation of several diiron complexes of electron-rich R(3)TPA ligands and elaborate on conditions required to generate synthetic models of diiron(IV) protein intermediates with this ligand framework.


Subject(s)
Ferric Compounds/chemistry , Oxygen/chemistry , Pyridines/chemistry , Crystallography, X-Ray , Electrons , Hydrogen Peroxide/chemistry , Ligands , Models, Molecular , Oxidation-Reduction , Water/chemistry
8.
J Am Chem Soc ; 133(41): 16657-67, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-21899336

ABSTRACT

An [Fe(IV)(2)(µ-O)(2)] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C-H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Because of the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe(2)(µ-O)(2)] cores. We report here that water or alcohol substrates can activate synthetic [Fe(III)Fe(IV)(µ-O)(2)] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C-H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [Fe(III)Fe(IV)(µ-O)(2)] core, resulting in the formation of a more reactive species with a [X-Fe(III)-O-Fe(IV)═O] ring-opened structure (1-X, 2-X, X = OH(-) or OR(-)). Treatment of 2 with methoxide at -80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 Fe(III)/S = 2 Fe(IV)] pair. Even at this low temperature, the complex undergoes facile intramolecular C-H bond cleavage to generate formaldehyde, showing that the terminal high-spin Fe(IV)═O unit is capable of oxidizing a C-H bond as strong as 96 kcal mol(-1). This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C-H bond (D(C-H) 81 kcal mol(-1)). The activation of the [Fe(III)Fe(IV)(µ-O)(2)] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second-order rate constant that is 3.6 × 10(7)-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an S = 2 Fe(IV)═O unit is much more reactive at H-atom abstraction than its S = 1 counterpart and suggest that core isomerization could be a viable strategy for the [Fe(IV)(2)(µ-O)(2)] diamond core of sMMO-Q to selectively attack the strong C-H bond of methane in the presence of weaker C-H bonds of amino acid residues that define the diiron active site pocket.


Subject(s)
Ferric Compounds/chemistry , Ferric Compounds/metabolism , Ligands , Molecular Structure , Oxygenases/chemistry , Oxygenases/metabolism , Quantum Theory , Substrate Specificity
9.
Inorg Chem ; 49(18): 8310-22, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20795646

ABSTRACT

Previously we have characterized two high-valent complexes [LFe(IV)(µ-O)(2)Fe(III)L], 1, and [LFe(IV)(O)(µ-O)(OH) Fe(IV)L], 4. Addition of hydroxide or fluoride to 1 produces two new complexes, 1-OH and 1-F. Electron paramagnetic resonance (EPR) and Mössbauer studies show that both complexes have an S = 1/2 ground state which results from antiferromagnetic coupling of the spins of a high-spin (S(a) = 5/2) Fe(III) and a high-spin (S(b) = 2) Fe(IV) site. 1-OH can also be obtained by a 1-electron reduction of 4, which has been shown to have an Fe(IV)═O site. Radiolytic reduction of 4 at 77 K yields a Mössbauer spectrum identical to that observed for 1-OH, showing that the latter contains an Fe(IV)═O. Interestingly, the Fe(IV)═O moiety has S(b) = 1 in 4 and S(b) = 2 in 1-OH and 1-F. From the temperature dependence of the S = 1/2 signal we have determined the exchange coupling constant J (ℋ = JS(a)·S(b) convention) to be 90 ± 20 cm(-1) for both 1-OH and 1-F. Broken-symmetry density functional theory (DFT) calculations yield J = 135 cm(-1) for 1-OH and J = 104 cm(-1) for 1-F, in good agreement with the experiments. DFT analysis shows that the S(b) = 1 → S(b) = 2 transition of the Fe(IV)═O site upon reduction of the Fe(IV)-OH site to high-spin Fe(III) is driven primarily by the strong antiferromagnetic exchange in the (S(a) = 5/2, S(b) = 2) couple.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Iron/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Quantum Theory , Spectroscopy, Mossbauer/methods , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Oxidation-Reduction
10.
Nat Chem ; 2(5): 400-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20414242

ABSTRACT

In biological systems, the cleavage of strong C-H bonds is often carried out by iron centres-such as that of methane monooxygenase in methane hydroxylation-through dioxygen activation mechanisms. High valent species with [Fe(2)(micro-O)(2)] diamond cores are thought to act as the oxidizing moieties, but the synthesis of complexes that cleave strong C-H bonds efficiently has remained a challenge. We report here the conversion of a synthetic complex with a valence-delocalized [Fe(3.5)(micro-O)(2)Fe(3.5)](3+) diamond core (1) into a complex with a valence-localized [HO-Fe(III)-O-Fe(IV)=O](2+) open core (4), which cleaves C-H bonds over a million-fold faster. This activity enhancement results from three factors: the formation of a terminal oxoiron(iv) moiety, the conversion of the low-spin (S = 1) Fe(IV)=O centre to a high-spin (S = 2) centre, and the concentration of the oxidizing capability to the active terminal oxoiron(iv) moiety. This suggests that similar isomerization strategies might be used by nonhaem diiron enzymes.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Iron Compounds/chemistry , Catalysis , Isomerism , Molecular Structure , Oxidation-Reduction
11.
Dalton Trans ; (34): 6741-50, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19690685

ABSTRACT

The biomimetic diiron complex [Fe(III)Fe(IV)(mu-O)(2)(5-Me(3)-TPA)(2)](ClO(4))(3) (TPA = tris(2-pyridylmethyl)amine) has been found to be capable of oxidizing 9,10-dihydroanthracene in a solution of acetonitrile. Addition of water up to 1 M makes the reaction 200 times faster, suggesting that the water molecule in some way activates the catalyst for more efficient substrate oxidation. It is proposed that the enhanced reactivity results from the coordination of a water molecule to the iron(III) half of the complex, converting the bis-mu-oxo structure of the diiron complex to a ring-opened form where one of the bridging oxo groups is transformed into a terminal oxo group on iron(IV). The suggested mechanism is supported by DFT (B3LYP) calculations and transition state theory. Two different computational models of the diiron complex are used to model the hydroxylation of cyclohexane to cyclohexanol. Model has a bis-mu-oxo diiron core (diamond core) while model represents the "open core" analogue with one bridging mu-oxo group, a terminal oxo ligand on iron(IV), and a water molecule coordinated to iron(III). The computational results clearly suggest that the terminal oxo group is more reactive than the bridging oxo group. The free energy of activation is 7.0 kcal mol(-1) lower for the rate limiting step when the oxidant has a terminal oxo group than when both oxo groups are bridging the irons.


Subject(s)
Biomimetic Materials/chemistry , Ferric Compounds/chemistry , Water/chemistry , Models, Chemical , Molecular Conformation , Pyridines/chemistry , Thermodynamics
12.
J Am Chem Soc ; 131(16): 5823-30, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-19338307

ABSTRACT

Recently, we reported the reaction of the (mu-oxo)diiron(III) complex 1 ([Fe(III)(2)(mu-O)(mu-O(2)H(3))(L)(2)](3+), L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) with 1 equiv of H(2)O(2) to yield a diiron(IV) intermediate, 2 (Xue, G.; Fiedler, A. T.; Martinho, M.; Munck, E.; Que, L., Jr. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 20615-20). Upon treatment with HClO(4), complex 2 converted to a species with an Fe(IV)(2)(mu-O)(2) diamond core that serves as the only synthetic model to date for the diiron(IV) core proposed for intermediate Q of soluble methane monooxygenase. Here we report detailed Mossbauer and density functional theory (DFT) studies of 2. The Mossbauer studies reveal that 2 has distinct Fe(IV) sites, a and b. Studies in applied magnetic fields show that the spins of sites a and b (S(a) = S(b) = 1) are ferromagnetically coupled to yield a ground multiplet with S = 2. Analysis of the applied field spectra of the exchange-coupled system yields for site b a set of parameters that matches those obtained for the mononuclear [LFe(IV)(O)(NCMe)](2+) complex, showing that site b (labeled Fe(O)) has a terminal oxo group. Using the zero-field splitting parameters of [LFe(IV)(O)(NCMe)](2+) for our analysis of 2, we obtained parameters for site a that closely resemble those reported for the nonoxo Fe(IV) complex [(beta-BPMCN)Fe(IV)(OH)(OO(t)Bu)](2+), suggesting that a (labeled Fe(OH)) coordinates a hydroxo group. A DFT optimization performed on 2 yielded an Fe-Fe distance of 3.39 A and an Fe-(mu-O)-Fe angle of 131 degrees , in good agreement with the results of our previous EXAFS study. The DFT calculations reproduce the Mossbauer parameters (A-tensors, electric field gradient, and isomer shift) of 2 quite well, including the observation that the largest components of the electric field gradients of Fe(O) and Fe(OH) are perpendicular. The ferromagnetic behavior of 2 seems puzzling given that the Fe-(mu-O)-Fe angle is large but can be explained by noting that the orbital structures of Fe(O) and Fe(OH) are such that the unpaired electrons at the two sites delocalize into orthogonal orbitals at the bridging oxygen, rationalizing the ferromagnetic behavior of 2. Thus, inequivalent coordinations at Fe(O) and Fe(OH) define magnetic orbitals favorable for ferromagnetic ineractions.


Subject(s)
Iron/chemistry , Oxygen/chemistry , Quantum Theory , Spectroscopy, Mossbauer , Ferric Compounds/chemistry , Magnetics
13.
Chem Commun (Camb) ; (1): 50-2, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-19081995

ABSTRACT

Reported in this paper is the first example of a biomimetic iron complex, ([Fe(II)(TPA)(NCMe)(2)](2+) (TPA = tris(2-pyridylmethyl)amine), that catalyses the cis-dihydroxylation of an aromatic double bond, mimicking the action of the non-haem iron enzyme naphthalene dioxygenase and shedding light on its possible mechanism of action.


Subject(s)
Ferrous Compounds/chemistry , Multienzyme Complexes/chemistry , Nonheme Iron Proteins/chemistry , Oxygenases/chemistry , Biomimetics , Catalysis , Dioxygenases , Hydrogen Peroxide/chemistry , Hydroxylation , Naphthols/chemistry , Oxidants/chemistry , Oxygen Radioisotopes/chemistry
14.
Proc Natl Acad Sci U S A ; 104(52): 20713-8, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18093922

ABSTRACT

Intermediate Q, the methane-oxidizing species of soluble methane monooxygenase, is proposed to have an [Fe(IV)(2)(mu-O)(2)] diamond core. In an effort to obtain a synthetic precedent for such a core, bulk electrolysis at 900 mV (versus Fc(+/0)) has been performed in MeCN at -40 degrees C on a valence-delocalized [Fe(III)Fe(IV)(mu-O)(2)(L(b))(2)](3+) complex (1b) (E(1/2) = 760 mV versus Fc(+/0)). Oxidation of 1b results in the near-quantitative formation of a deep red complex, designated 2b, that exhibits a visible spectrum with lambda(max) at 485 nm (9,800 M(-1).cm(-1)) and 875 nm (2,200 M(-1).cm(-1)). The 4.2 K Mössbauer spectrum of 2b exhibits a quadrupole doublet with delta = -0.04(1) mm.s(-1) and DeltaE(Q) = 2.09(2) mm.s(-1), parameters typical of an iron(IV) center. The Mössbauer patterns observed in strong applied fields show that 2b is an antiferromagnetically coupled diiron(IV) center. Resonance Raman studies reveal the diagnostic vibration mode of the [Fe(2)(mu-O)(2)] core at 674 cm(-1), downshifting 30 cm(-1) upon (18)O labeling. Extended x-ray absorption fine structure (EXAFS) analysis shows two O/N scatterers at 1.78 A and an Fe scatterer at 2.73 A. Based on the accumulated spectroscopic evidence, 2b thus can be formulated as [Fe(IV)(2)(mu-O)(2)(L(b))(2)](4+), the first synthetic complex with an [Fe(IV)(2)(mu-O)(2)] core. A comparison of 2b and its mononuclear analog [Fe(IV)(O)(L(b))(NCMe)](2+) (4b) reveals that 4b is 100-fold more reactive than 2b in oxidizing weak C H bonds. This surprising observation may shed further light on how intermediate Q carries out the hydroxylation of methane.


Subject(s)
Electrochemistry/methods , Iron/chemistry , Oxidation-Reduction , Oxygen/chemistry , Oxygenases/chemistry , Carbon/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Ligands , Magnetic Resonance Spectroscopy , Molecular Conformation , Photochemistry/methods , Scattering, Radiation , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Mossbauer , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...