Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(21): 21170-21181, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37877944

ABSTRACT

Therapeutic tumor vaccines, which use tumor antigens to stimulate a cancer patient's immune system to eventually kill the tumor tissues, have emerged as one of the most attractive strategies in anticancer research. Especially, exploring in situ vaccines has become a potential field in cancer immunotherapy. However, due to the hypoxic tumor microenvironment, the generation of tumor antigens is always mild and not sufficient. Hence, in this study, we designed a closed-loop mitochondrial oxygen-economizer (TPCA) to induce enhanced phototherapy-driven in situ vaccines. The O2-economizer was developed by the integration of the photosensitizer CyI and the mitochondrial inhibitor atovaquone into the PAMAM dendrimer. In vitro and in vivo studies showed that TPCA could enter the mitochondria through (3-propylcarboxyl) triphenylphosphine bromide (TPP) and effectively restrict the respiration of tumor cells to reduce tumor hypoxia, thus providing continuous oxygen for enhanced iodinated cyanine dye mediated photodynamic therapy, which could further induce in situ vaccines for ablating the primary tumor directly and inhibiting the tumor metastasis and recurrence. Furthermore, the antitumor mechanism revealed that O2-economizer-based oxygen-boosted PDT elicited immunogenic cancer cell death with enhanced exposure and release of DAMPs and altered the immunosuppressive tumor microenvironment with increased recruitment of T cells in tumors, thereby inducing in situ vaccines and provoking the systematic antitumor responses against CT26 tumors. This study will provide innovative approaches for local, abscopal, and metastatic tumor treatment.


Subject(s)
Cancer Vaccines , Nanoparticles , Photochemotherapy , Humans , Oxygen/metabolism , Phototherapy , Hypoxia , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cancer Vaccines/therapeutic use , Antigens, Neoplasm , Cell Line, Tumor , Tumor Microenvironment
2.
Int J Nanomedicine ; 18: 3443-3457, 2023.
Article in English | MEDLINE | ID: mdl-37396434

ABSTRACT

Introduction: Here, based on oxygen-dependent photodynamic therapy (PDT) and oxygen-consumed oxidative phosphorylation of cancer tissues, we designed and developed a nanosystem (named CyI&Met-Liposome, LCM) to co-encapsulate the photosensitizer CyI and mitochondrial respiration inhibitor metformin (Met) as a PDT enhancer. Methods: We synthesized nanoliposomes encapsulating Met and CyI with excellent photodynamic/photothermal and anti-tumor immune properties using a thin film dispersion method. Confocal microscopy and flow cytometry were used to assess the cellular uptake, PDT, photothermal therapy (PTT) and immunogenicity of nanosystem in vitro. Finally, two tumor models in mice were constructed to investigate the tumor suppression and immunity in vivo. Results: The resulting nanosystem relieved hypoxia in tumor tissues, enhanced PDT efficiency, and amplified antitumor immunity induced by phototherapy. As a photosensitizer, CyI effectively killed the tumor by generating toxic singlet reactive oxygen species (ROS), while the addition of Met reduced oxygen consumption in tumor tissues, thereby evoking an immune response via oxygen-boosted PDT. Both in vitro and in vivo results illustrated that LCM effectively restricted the respiration of tumor cells to reduce tumor hypoxia, thus providing continuous oxygen for enhanced CyI-mediated PDT. Furthermore, T cells were recruited and activated at high levels, providing a promising platform to eliminate the primary tumors and synchronously realize effective inhibition of distant tumors.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Phototherapy/methods , Neoplasms/drug therapy , Oxygen , Respiration , Cell Line, Tumor
3.
J Colloid Interface Sci ; 645: 882-894, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37178565

ABSTRACT

Photodynamic therapy (PDT), as a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species, has been widely used for eliminating cancer cells under specific wavelength light irradiation. However, the low aqueous solubility of PSs and special tumor microenvironments (TME), such as high glutathione (GSH) and tumor hypoxia remain challenges towards PDT for hypoxic tumor treatment. To address these problems, we constructed a novel nanoenzyme for enhanced PDT-ferroptosis therapy by integrating small Pt nanoparticles (Pt NPs) and near-infrared photosensitizer CyI into iron-based metal organic frameworks (MOFs). In addition, hyaluronic acid was adhered to the surface of the nanoenzymes to enhance the targeting ability. In this design, MOFs act not only as a delivery vector for PSs, but also a ferroptosis inducer. Pt NPs stabilized by MOFs were functioned as an oxygen (O2) generator by catalyzing hydrogen peroxide into O2 to relieve tumor hypoxia and increase singlet oxygen generation. In vitro and in vivo results demonstrated that under laser irradiation, this nanoenzyme could effectively relive the tumor hypoxia and decrease the level of GSH, resulting in enhanced PDT-ferroptosis therapy against hypoxic tumor. The proposed nanoenzymes represent an important advance in altering TME for improved clinical PDT-ferroptosis therapy, as well as their potential as effective theranostic agents for hypoxic tumors.


Subject(s)
Ferroptosis , Metal-Organic Frameworks , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Metal-Organic Frameworks/pharmacology , Photochemotherapy/methods , Cell Line, Tumor , Photosensitizing Agents , Neoplasms/drug therapy , Oxygen , Hydrogen Peroxide/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...