Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 254: 112516, 2024 05.
Article in English | MEDLINE | ID: mdl-38471287

ABSTRACT

Tunichlorin, the naturally occurring chlorophyll cofactor containing Ni(II) ion, sets up a golden standard for designing the electrocatalysts for hydrogen evolution reaction (HER) via ß-peripheral modification. Besides the fine-tuning of the porphyrin ß-periphery such as adjusting the aromatics (the saturated level of tetrapyrrole) or installing hydroxyl group (hydrogen bond network) to enhance the catalytic HER efficiency, here we report that ß-fluorination of porphyrin is also an important approach to increase the reactivity of Ni(II) center. Benefiting the previously reported derivatization of ß-fluorinated porpholactones, we constructed a ß-fluorinated tunichlorin mimic (6). Compared with the non-fluorinated analogs (1, 3, and 5), we found that 2, 4, and 6 exhibit significant electrocatalytic HER reactivity acceleration (in terms of turnover frequencies, TOF, s-1) of ca. 37, 170, 133-fold, respectively. Mechanism studies suggested that ß-fluorination negatively shifts the metal complexes' reduction potentials and accelerates the electron transfer process, both contributing to the boosting of HER reaction. Notably, 6 showed an 890-fold increase of TOFs than 1, demonstrating the combining advantages of the of fluorination, hydrogenation, and hydroxylation at porphyrin ß-periphery.


Subject(s)
Metalloporphyrins , Porphyrins , Porphyrins/chemistry , Hydrogen/chemistry , Nickel/chemistry , Halogenation , Catalysis
2.
Chem Sci ; 13(31): 8979-8988, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36091208

ABSTRACT

The hypoxic microenvironment is considered the preponderant initiator to trigger a cascade of progression and metastasis of tumors, also being the major obstacle for oxygen consumption therapeutics, including photodynamic therapy (PDT). In this work, we report a programmable strategy at the molecular level to modulate the reciprocal interplay between tumor hypoxia, angiogenesis, and PDT outcomes by reinforcing synergistic action between a H2O2 scavenger, O2 generator and photosensitizer. The modular combination of a catalase biomimetic (tri-manganese cryptand, 1) and a photosensitizer (Ce6) allowed the rational design of a cascade reaction beginning with dismutation of H2O2 to O2 under hypoxic conditions to enhance photosensitization and finally photooxidation. Concurrently, this led to the decreased expression of the vascular endothelial growth factor (VEGF) and effectively reduced unwanted growth of blood vessels observed in the chick chorioallantois membrane (CAM). Notably, the proof-of-principle experiments using the tumor-bearing models proved successful in enhancing PDT efficacy, prolonging their life cycles, and improving immunity, which could be monitored by magnetic resonance imaging (MRI).

3.
Chempluschem ; 86(1): 4, 2021 01.
Article in English | MEDLINE | ID: mdl-33215795

ABSTRACT

Invited for this month's cover is the group of Jun-Long Zhang, Peking University, Beijing. The cover picture shows the porpholactone cofactor, which play unique roles in molecular imaging and therapy (or theranostics), catalysis, as well as energy and optical materials. This class of molecules is ideal for more intriguing scientific research and future practical applications. Read the full text of the Minireview at 10.1002/cplu.202000494.

4.
Chempluschem ; 86(1): 71-81, 2021 01.
Article in English | MEDLINE | ID: mdl-32844583

ABSTRACT

The emergence of porpholactone chemistry, discovered over 30 years ago, has significantly stimulated the development of biomimetic tetrapyrrole chemistry. It offers an opportunity, through modifications of non-pyrrolic building blocks, to clarify the relationship between chemical structure and excited-state properties, deciphering the structural code for the biological functions of life pigments. With intriguing photophysical properties in the red to near-infrared (NIR) regions, facile modulation of their electronic nature by fine-tuning chemical structures, and coordination ability with diverse metal ions, these novel porphyrinoids have favorable prospects in the fields of optical materials, bioimaging and therapy, and catalysis. In this Minireview, we summarize the brief history of porpholactone chemistry, and focus on the studies carried out in our group, particularly on the regioisomeric effect, NIR lanthanide luminescence, and metal catalysis. We outline the perspectives of these compounds in the construction of porpholactone-related biomedical applications and optical and energy materials, in order to inspire more interest and further advance bioinspired inorganic chemistry and lanthanide chemical biology.

5.
J Am Chem Soc ; 142(22): 10219-10227, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32390429

ABSTRACT

Oxidative stress is one of the hallmarks of ischemic stroke. Catalase-based (CAT) biomimetic complexes are emerging as promising therapeutic candidates that are expected to act as neuroprotectants for ischemic stroke by decreasing the damaging effects from H2O2. Unfortunately, these molecules result in the unwanted production of the harmful hydroxyl radical, HO•. Here, we report a series of salen-based tri-manganese (Mn(III)) metallocryptands (1-3) that function as catalase biomimetics. These cage-like molecules contain a unique "active site" with three Mn centers in close proximity, an arrangement designed to facilitate metal cooperativity for the effective dismutation of H2O2 with minimal HO• production. In fact, significantly greater oxygen production is seen for 1-3 as compared to the monomeric Mn(Salen) complex, 1c. The most promising system, 1, was studied in further detail and found to confer a greater therapeutic benefit both in vitro and in vivo than the monomeric control system, 1c, as evident from inter alia studies involving a rat model of ischemic stroke damage and supporting histological analyses. We thus believe that metallocryptand 1 and its analogues represent a new and seemingly promising strategy for treating oxidative stress related disorders.


Subject(s)
Antioxidants/pharmacology , Brain Ischemia/drug therapy , Coordination Complexes/pharmacology , Ischemic Stroke/drug therapy , Neuroprotective Agents/pharmacology , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Apoptosis/drug effects , Brain Ischemia/metabolism , Brain Ischemia/pathology , Catalase/metabolism , Cells, Cultured , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Disease Models, Animal , Ethylenediamines/chemistry , Ethylenediamines/pharmacology , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Manganese/chemistry , Manganese/pharmacology , Molecular Conformation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Optical Imaging , Oxygen/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...