Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 937: 173539, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38806130

ABSTRACT

The occurrence and ecological impacts of emerging fungicides in the environment has gained increasing attention. This study applied an in-jar passive sampling device based on silicone rubber (SR) film to measuring the freely dissolved concentration (Cfree) of 6 current-use fungicides as a critical index of bioavailability in water and soils. The kinetics parameters including SR-water, soil-water, and organic carbon-water partition coefficients and sampling rates of the target fungicides were first attained and characterized well with their physicochemical properties. The in situ and ex situ field deployment in Hefei City provided the assessment of contaminated levels for these fungicides in rivers and soils. The Cfree of triadimefon and azoxystrobin was estimated at 0.54 ± 0.07-17.4 ± 2.5 ng L-1 in Nanfei River and Chao Lake, while triadimefon was only found in Dongpu Reservoir water with Cfree below 0.66 ± 0.04 ng L-1. The results exhibited that the equilibrium duration of 7 d was suitable for water application but a longer interval of 14 d was recommended for soil sampling. This work demonstrated the advantages of the proposed strategy in terms of fast monitoring within 2 weeks and high sensitivity down to detection limits in 0.5-5 ng L-1. The in-jar passive sampling device can be extrapolated to the evaluation for a wide coverage of organic pollutants in water and soils.


Subject(s)
Environmental Monitoring , Fungicides, Industrial , Silicone Elastomers , Soil Pollutants , Soil , Water Pollutants, Chemical , Fungicides, Industrial/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Soil Pollutants/analysis , Soil/chemistry , China , Rivers/chemistry
2.
Org Lett ; 26(11): 2212-2217, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38452132

ABSTRACT

In this report, we present a photopromoted, metal-free transannulation of phenyl azides for the synthesis of DNA-encoded seven-membered rings. The transformation is efficiently achieved through a skeletal editing strategy targeting the benzene motif coupled with a Reversible Adsorption to Solid Support (RASS) strategy. A variety of valuable DNA-encoded seven-membered ring compounds, including DNA-encoded 3H-azepines, azepinones, and unnatural amino acids, are now accessible. Crucially, this DNA-compatible protocol can also be applied for the introduction of complex molecules, as exemplified by Lorcaserin and Betahistine. The selective conversion of readily available phenyl rings into high-value seven-membered rings offers a promising avenue for the construction of diversified and drug-like DNA-encoded library.


Subject(s)
Azides , Benzene , Cyclization , Amines , DNA
3.
J Sep Sci ; 46(2): e2200661, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36373185

ABSTRACT

A novel solid-phase microextraction device coated with an efficient and cheap thin film of polyurethane was developed for trace determination of 13 widely used pesticides in fruit and tea beverages. A round-shaped polyurethane film covering the bottom of a glass vial was fabricated as the sorbent to exhibit a superior capacity for preconcentrating target compounds and reducing matrix interferences. After optimization of the key parameters including the film type, extraction time, solution pH, ionic strength, desorption solvent, and conditions, this device allowed an efficient adsorption-desorption cycle for the pesticides accomplished in one vial. Coupled with gas chromatography-electron capture detection, the polyurethane-coated thin film microextraction method was successfully established and applied for the analysis of real fruit and tea drinks, showing low limits of detection (0.001-0.015 µg/L), wide linear ranges (1.0-500.0 µg/L, r2  > 0.9931), good relative recoveries (77.2%-106.3%) and negligible matrix effects (86.1%-107.5%) for the target pesticides. The proposed approach revealed strong potential of extending its application by flexibly modifying the type or size of the coating film. This study provides insights into the enrichment of contaminants from complex samples using inexpensive and reusable microextraction devices that can limit the environmental and health impact of the sample preparation protocol.


Subject(s)
Pesticides , Pesticides/analysis , Solid Phase Microextraction/methods , Polyurethanes/analysis , Fruit/chemistry , Beverages/analysis , Tea/chemistry
4.
Neuropharmacology ; 214: 109140, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35613660

ABSTRACT

Anxiety is characterized by feelings of tension and worry even in the absence of threatening stimulus. Pathological condition of anxiety elicits defensive behavior and aversive reaction ultimately impacting individuals and society. The gut microbiota has been shown to contribute to the modulation of anxiety-like behavior in rodents through the gut-brain axis. Several studies observed that germ-free (GF) and the broad spectrum of antibiotic cocktail (ABX)-treated rodents display lowered anxiety-like behavior. We speculate that gut microbial short-chain fatty acids (SCFA) modulate the innate anxiety response. Herein, we administered SCFA in the drinking water in adult mice treated with ABX to deplete the microbiota and tested their anxiety-like behavior. To further augment the innate fear response, we enhanced the aversive stimulus of the anxiety-like behavior tests. Strikingly, we found that the anxiety-like behavior in ABX mice was not altered when enhanced aversive stimulus, while control and ABX mice supplemented with SCFA displayed increased anxiety-like behavior. Vagus nerve serves as a promising signaling pathway in the gut-brain axis. We determined the role of vagus nerve by subdiaphragmatic vagotomy (SDV) in ABX mice supplemented with SCFA. We found that the restored anxiety-like behavior in ABX mice by SCFA was unaffected by SDV. These findings suggest that gut microbiota can regulate anxiety-like behavior through their fermentation products SCFA.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Anxiety/drug therapy , Anxiety Disorders , Fatty Acids, Volatile/metabolism , Mice , Mice, Inbred C57BL
5.
Sci Total Environ ; 833: 155239, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421494

ABSTRACT

The intensive use of acetochlor in China leads to its extensive existence in soil which may result in contamination of crops and commodities. Therefore, it is vital to assess the bioavailability and phytotoxicity of acetochlor to crops. In this study, four measurements involved in in situ pore water extraction (CIPW), passive sampling extraction (Cfree), ex situ pore water extraction (CEPW), and organic solvent extraction (Csoil) were conducted to assess the bioavailability and phytotoxicity of acetochlor to wheat plant plants in five soils. The results showed that the acetochlor concentrations accumulated in wheat foliage and roots were in the range of 0.11-0.87 mg/kg and 0.09-2.02 mg/kg in the five tested soils, respectively, and had a significant correlation with the acetochlor values analyzed by CIPW (R2 = 0.83-0.90, p < 0.0001) or the Cfree method (R2 = 0.86-0.92, p < 0.0001). The acetochlor concentrations in the five soils measured by these two methods were also correlated with the IC50 values of acetochlor in wheat foliage and roots (R2 > 0.69, p ≤ 0.05). The results indicated that the CIPW and Cfree methods were effective in evaluating acetochlor toxicity to wheat and the acetochlor concentrations in wheat. The effects of soil physical and chemical properties including pH, organic matter content (OMC), clay content, and cation exchange capacity (CEC) on the acetochlor toxicity to wheat were analyzed, and soil OMC was found to be the dominant factor affecting the toxicity of acetochlor in the soil-wheat system.


Subject(s)
Soil Pollutants , Triticum , Biological Availability , Crops, Agricultural , Soil , Soil Pollutants/analysis , Toluidines , Water
6.
Technol Health Care ; 30(S1): 293-301, 2022.
Article in English | MEDLINE | ID: mdl-35124606

ABSTRACT

BACKGROUND: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many splicing factors play an important role in cancer progression. PRPF8 is a core protein component of the spliceosome complex, U4/U6-U5 tri-snRNP. OBJECTIVE: However, PRPF8 involved in mRNA alternative splicing are rarely included in the prognosis. METHODS: We found that PRPF8 was expressed in all examined cancer types. Further analyses found that PRPF8 expression was significantly different between the breast cancer and paracancerous tissues. RESULTS: Survival analyses showed that PRPF8-high patients had a poor prognosis, and the expression of PRPF8 is associated with distant metastasis-free survival (DMFS) and post progression survival (PPS). Gene Set Enrichment Analysis (GSEA) has revealed that PRPF8 expression is correlated with TGF-ß, JAK-STAT, and cell cycle control pathways. Consistent with these results, upon PRPF8 silencing, the growth of MCF-7 cells was reduced, the ability of cell clone formation was weakened, and p⁢21 expression was increased. CONCLUSIONS: These results have revealed that PRPF8 is a significant factor for splicing in breast cancer progression.


Subject(s)
Breast Neoplasms , Ribonucleoprotein, U5 Small Nuclear , Breast Neoplasms/genetics , Female , HeLa Cells , Humans , RNA Splicing Factors/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism
7.
Angew Chem Int Ed Engl ; 61(16): e202201103, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35165986

ABSTRACT

Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced ß-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Gold , Humans , Ligands , Neoplasms/drug therapy , Neoplasms/pathology , Thioredoxin-Disulfide Reductase
8.
Org Lett ; 24(1): 80-84, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-34898222

ABSTRACT

A rigid wing-shaped bicyclo[2.2.2]octadiene-fused bis-hexapyrrolohexaazacoronene (HPHAC) is synthesized, and subsequent chemical oxidation affords a stable biradical dication and an aromatic tetracation. The physicochemical properties and single-crystal structures in various oxidation states are characterized. The face-to-face π-stacked dimeric structures are observed in the neutral and dicationic states. The HPHAC flakes can act as aromatic walls in a tetracation state, producing enlarged induced magnetic shielding space through the superimposition effect.

9.
J Chromatogr A ; 1659: 462646, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34735961

ABSTRACT

An economical and effective thin film microextraction (TFME) for simultaneous analysis of ten neonicotinoid insecticides and metabolites in fruit juice and tea, was developed based on the combination of polyurethane (PU) and polymethyl methacrylate (PMMA) films as the sorbent followed by ultra high performance liquid chromatography with tandem mass spectrometry. The PU/PMMA composite was evidenced to possess rapid adsorption and strong accumulation towards neonicotinoids compared with the films used alone. A series of parameters were optimized, and the agitation mode, film size, ionic strength, desorption solvent and sample pH were found to dominate the microextraction process rather than the extraction temperature, agitation time and sample volume. The thin films are cost effective and efficient for single use analysis, but still can be reused at least 8 times with no significant loss in performance. The ten neonicotinoids were measured with good recoveries (81.1-107.9%), high enrichment factors (up to 135), low limits of detection (0.001-0.1 µg L-1), and wide linearity range (1-500 µg L-1, r2>0.9981) in fruit juice (apple, lemon, and pomegranate) and tea (green tea and black tea) samples. The proposed method was successfully applied to commercial fruit and tea drinks, and no samples were tested positive on target neonicotinoids. The PU/PMMA based TFME has shown great potential as an alternative to exhaustive extraction techniques for routine screening of trace neonicotinoids in fruit juice and tea by simplifying the analytical procedure, shortening the operation time, and lowering the material expense.


Subject(s)
Insecticides , Liquid Phase Microextraction , Adsorption , Chromatography, High Pressure Liquid , Fruit and Vegetable Juices , Insecticides/analysis , Neonicotinoids/analysis , Polymethyl Methacrylate , Polyurethanes , Tandem Mass Spectrometry , Tea
10.
Sci Total Environ ; 801: 149594, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34418631

ABSTRACT

The bioavailability and toxicity of herbicides on the crop depend on its uptake efficiency from the soil, and thus the assessment of the bioavailable fraction of herbicides in soil is a crucial work. In this study, we investigated the uptake concentration and toxicity of imazethapyr in maize plant using four chemical measurements, including the extraction of in situ pore water (CIPW), ex situ pore water (CEPW), organic solvent (Csoil) and passive sampling (Cfree) in five soils. The results obtained that the CIPW in a specific soil had the most significant correlation with the uptake concentration of imazethapyr in maize plant (R2 = 0.8851-0.9708), followed by CEPW (R2 = 0.8911-0.9565) and Cfree (R2 = 0.7881-0.9673). However, Cfree showed a higher correlation when considering all five soils, and thus Cfree can describe the bioavailability beyond the types of soil. Additionally, the median inhibition concentrations (IC50) of imazethapyr to maize plant ranged from 5.0 to 6.9 mg/kg in five soils, and the CIPW, CEPW and Cfree had better relationships with the IC50 (R2 > 0.8681) than the Csoil (R2 = 0.6782). The effects of soil properties on the phytotoxicity of imazethapyr, including pH, organic matter content, cation exchange capacity and clay content, were studied, and the soil pH was shown to be a main factor. This study demonstrated that the freely dissolved fraction and soil pore water concentration of imazethapyr in soil can be used to evaluate its bioavailability and toxicity to maize.


Subject(s)
Soil Pollutants , Soil , Biological Availability , Nicotinic Acids , Soil Pollutants/analysis , Soil Pollutants/toxicity , Zea mays
11.
Sci Total Environ ; 798: 149237, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34375255

ABSTRACT

The widespread use of neonicotinoid pesticides in agricultural production has caused pressure on the environment. In the present work, the interactions between humic acid (HA) and three neonicotinoid insecticides, dinotefuran, clothianidin and nitenpyram, were investigated by using multiple spectroscopy techniques combined with two-dimensional correlation spectroscopy analysis and density functional theory (DFT). Dinotefuran, clothianidin and nitenpyram could quench the endogenous fluorescence of HA through a static quenching process dominated by hydrogen bonds and van der Waals forces. According to the revised Stern-Volmer equation and DFT calculation, the binding abilities of the three pesticides with HA were ranked as dinotefuran < clothianidin < nitenpyram. The results of dynamic light scattering showed that neutral conditions were more conducive to the combination of HA and dinotefuran, clothianidin and nitenpyram. Through Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional correlation analysis (2D-COS), the functional group with the strongest binding ability in the HA-dinotefuran, HA-clothianidin and HA-nitenpyram system was CH, CO and CO, respectively. The work will help to further understand the behavior of neonicotinoid pesticides in the environment.


Subject(s)
Insecticides , Pesticides , Density Functional Theory , Humic Substances , Neonicotinoids , Spectrum Analysis
12.
Org Biomol Chem ; 19(9): 2030-2037, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33595046

ABSTRACT

A new type of twisted donor-acceptor molecular material 3a and 3b containing carbazole as an electron donor and keto-BODIPY bearing keto-isoindolinyl and pyridyl subunits as an acceptor has been prepared and characterized. Chemical modifications at the meso-position of keto-BODIPY with a nitrogen atom and a cyano group enhance the electron withdrawing ability and cause the emission color change from blue to yellow and red. Steady-state absorption and emission spectra of the two compounds show a strong intramolecular charge transfer (ICT) character. Time-resolved emission spectra and transient decay curves of 3a and 3b show efficient delayed fluorescence with a lifetime of 12.64 µs for 3a and 16.59 µs for 3b at room temperature, whereas persistent phosphorescence with a lifetime of 576.65 ms for 3a and 273.76 ms for 3b was obviously detected at 77 K. These photophysical behaviors have been fully revealed via X-ray diffraction analysis and theoretical calculations, and thus attributed to the hybridized local and charge-transfer (HLCT) states and increased spin-orbital coupling (SOC) strength by mixed n → π* and π → π* transitions involving heteroatom lone pairs and the π-conjugated skeleton, respectively.

13.
Environ Sci Pollut Res Int ; 28(20): 25939-25948, 2021 May.
Article in English | MEDLINE | ID: mdl-33483925

ABSTRACT

Sampling is a critical step in pesticide atmospheric analysis. Passive sampling offers advantages of inexpensive and convenient air monitoring. Polyethylene films (PE) were used as a passive sampler at multiple heights in greenhouse and agricultural field for 15 days to trap atmospheric chlorothalonil and lambda-cyhalothrin in the months of May and July. Among the two PE film thicknesses (20 and 80 µm), 20 µm PE was the most effective at absorbing target pesticides from air and attains equilibrium stage earlier than 80 µm PE film. After approximately 240 h of PE exposure in greenhouse and fields, chlorothalonil and lambda-cyhalothrin reached an equilibrium stage of partitioning between air and PE. Atmospheric concentrations of chlorothalonil (p < 0.01) and lambda-cyhalothrin (p < 0.001) at 1.5 m height were higher with the concentrations of 1855.59 ± 243.85 ng/m3 and 3682.11 ± 316.71 ng/m3, respectively, in the month of May as compared to the other three respective heights. The concentrations of chlorothalonil in air at 2 m height (1587.27 ± 284.19 ng/m3) were slightly higher than 0.5 m (1392.28 ± 205.09 ng/m3). Atmospheric concentrations of lambda-cyhalothrin at 2 m (3178.26 ± 299.29 ng/m3) were significantly lower than the other heights (p < 0.05). The greenhouse air concentrations of chlorothalonil and lambda-cyhalothrin in the months of May (1855.59 ± 243.85 and 3682.11 ± 316.71 ng/m3, respectively) and July (1749.33 ± 378.61 and 3445.08 ± 390.32 ng/m3, respectively) were higher than fields. The results indicate the usability of PE films to monitor chlorothalonil and lambda-cyhalothrin and potential other semi-volatile pesticides in agricultural fields.


Subject(s)
Polyethylene , Pyrethrins , Environmental Monitoring , Nitriles , Pyrethrins/analysis
14.
Sci Total Environ ; 728: 138797, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32339841

ABSTRACT

Passive sampling to regularly identify the occurrence of pyrethroid insecticides in urban streams is a crucial work of risk management with respect to intrinsic toxicity of pyrethroids to aquatic organisms. Polymeric films, based on an equilibrium sampling principle, have found increasing use as passive samplers for hydrophobic contaminants. Herein, we investigated two thin-film samplers, namely silicone rubber (SR) and polyvinylchloride (PVC), compatible with a suite of 8 pyrethroids, for measuring freely dissolved concentrations (Cfree) in water. The characteristics of SR and PVC samplers were estimated in terms of equilibrium partitioning coefficients (Kf) with log units of 3.90-4.67 and sampling rates (Rs) of 0.011-0.016 L/h. The parameters were correlated positively with octanol-water partition coefficients of the compounds, whereas independent on water solubility. A strong agreement between Cfree obtained from the two samplers was observed in a range of 0.1-10 µg/L for pyrethroids under laboratory simulated conditions. Both of SR and PVC were confirmed as equilibrium samplers with faster sampling rates of pyrethroids that equilibrated on films within only one week, and higher accumulation at factors of 5.3-12.5 and 1.5-2.4 compared to a performance reference compound (PRC)-preload sampler. Additionally, the comparable results of the two passive sampling methods in multiple field applications indicated that the direct deployment of the two samplers without PRCs calibration can provide reliable assessment of trace concentrations. This study demonstrated the routine utilization of SR and PVC as promising tools for rapid and sensitive in-situ monitoring of pyrethroids, and indicators for the bioavailability against total chemical concentrations in variable aquatic environments.

15.
Mikrochim Acta ; 186(9): 596, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375985

ABSTRACT

This work introduces polyurethane (PU) as an efficient and economic sorbent for thin film solid phase microextraction of pyrethroid insecticides, specifically of bifenthrin, fenpropathrin, lambda-cyhalothrin, permethrin, cypermethrin, flucythrinate, fenvalerate and deltamethrin. The PU film is immersed into chrysanthemum tea under ultrasonication for the adsorption of the analytes, and the analytes are desorbed by a mixture of hexane and ethyl acetate and then quantified by gas chromatography with electron capture detection. The film type, adsorption temperature, extraction time, sample condition, and desorption procedure were optimized. The adsorption capacity and robustness of the PU film is found to be excellent for analysis of pyrethroids in chrysanthemum tea. The limits of detection and method limits of detection range from 0.05-0.5 µg L-1 and 0.0003-0.003 µg L-1, respectively. The relative recoveries from spiked samples are between 84.5 and 104.1%, and enrichment factors up to 188. The method was validated through blind split analyses of chrysanthemum tea infusion and ready-to-drink samples with liquid-liquid extraction. Good agreement between the two approaches shows the method to have an accuracy that is similar to that of the conventional technique. Compared with other reported approaches, the PU-based method exhibites a higher sensitivity, easier operation, lower costs and less matrix effects. Graphical abstract Schematic representation of the use of a polyurethane film as an efficient and economic sorbent for the microextraction of 8 pyrethroids by gas chromatography. This method exhibites excellent performance of accuracy, sensitivity, and robustness, demonstrating its potential of application in the analysis of complex matrix.

16.
J Sep Sci ; 42(18): 2993-3001, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301158

ABSTRACT

A novel dispersive liquid-liquid microextraction that combines self-induced acid-base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self-reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1-undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001-0.1 µg/L), good recoveries (86.2-103.6%), high enrichment factors (25-50), and negligible matrix effects (-12.3-13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid-content matrices.


Subject(s)
Fruit and Vegetable Juices/analysis , Insecticides/analysis , Liquid Phase Microextraction , Neonicotinoids/analysis , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Insecticides/metabolism , Neonicotinoids/metabolism
17.
Sci Total Environ ; 686: 1039-1048, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31200302

ABSTRACT

2,7-Dibromocarbazole (2,7-DBCB) and 3,6-dibromocarbazole (3,6-DBCB) are emerging environmental pollutants, being potentially high risks to human health. In this study, interactions of the two compounds with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated by molecular modeling, density functional theory calculations (DFT) and multispectral techniques. The static quenching interaction deduced in the fluorescence quenching experiment is confirmed by the time-resolved analyses. The interactions of the two compounds with HSA/BSA induce molecular microenvironment and conformation changes, as assessed by synchronous and 3D fluorescence spectra, together with a destruction of polypeptide carbonyl hydrogen bond network by circular dichroism and Fourier transform infrared analyses. The thermodynamic analysis indicated that the spontaneous interaction was hydrogen bonding and hydrophobic forces. The binding constant Ka at 298 K was 3.54 × 105 M-1 in HSA-2,7-DBCB, 6.63 × 105 M-1 in HSA-3,6-DBCB, 1.32 × 105 M-1 in BSA-2,7-DBCB and 2.17 × 105 M-1 in BSA-3,6-DBCB. These results indicates that 3,6-DBCB binds HSA/BSA more strongly than 2,7-DBCB, which was estimated with DFT calculations. Site marker competition experiments coupled with molecular modeling studies confirmed that both compounds bind HSA/BSA at site I (subdomain IIA). The results suggest that interactions between 2,7-DBCB and 3,6-DBCB with HSA and BSA may affect the normal physiological activities in human and animals.


Subject(s)
Carbazoles/chemistry , Environmental Pollutants/chemistry , Models, Molecular , Serum Albumin, Bovine/chemistry , Animals , Circular Dichroism , Density Functional Theory , Fluorescence , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Serum Albumin , Thermodynamics
18.
Anal Bioanal Chem ; 411(2): 315-327, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30578440

ABSTRACT

A sensitive and rapid method named dispersive solid-liquid microextraction combining in situ acid-base reaction-based effervescence and solidification of a floating organic droplet was developed for the simultaneous determination of eight neonicotinoid insecticides and two metabolites in rice by ultra-performance liquid chromatography-tandem mass spectrometry. The samples were extracted with sodium citrate monobasic-modified acetonitrile by vortexing and purified by primary secondary amine, and then a mixture of 1-undecanol and sodium carbonate aqueous solution was rapidly injected. An acid-base reaction and carbon dioxide bubbles were generated in situ, which promoted the dispersion of 1-undecanol droplets and subsequent transfer of the analytes from the acidified acetonitrile extract to 1-undecanol. The 1-undecanol phase was easily retrieved by centrifugation and solidification in an ice bath. This novel dispersive solid-liquid microextraction fully utilized the advantages of the effervescent reaction and floating droplet solidification, which was carried out in a tube and did not require stepwise analysis for a solid matrix. Under the optimized conditions, the average recoveries of the analytes ranged from 77.8 to 97.1% with relative standard deviations less than 7.3. The limits of detection varied between 0.01 and 0.1 µg kg-1, and enrichment factors were 42-55. The proposed method provides a quantitative, sensitive, and convenient analytical tool applicable for routine monitoring of neonicotinoids in rice. Graphical abstract ᅟ.


Subject(s)
Insecticides/chemistry , Liquid Phase Microextraction/methods , Neonicotinoids/chemistry , Oryza/chemistry , Solid Phase Microextraction/methods , Food Analysis , Food Contamination
19.
J Agric Food Chem ; 66(4): 1023-1032, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29290106

ABSTRACT

Emerging fungal phytodiseases are increasingly becoming a food security threat. Twenty-six new 3-acylthiotetronic acid derivatives were designed, synthesized, characterized, and evaluated for activities against Valsa mali, Curvularia lunata, Fusarium graminearum, and Fusarium oxysporum f. sp. lycopersici. Among the 26 compounds, 6f was the most effective against V. mali, C. lunata, F. graminearum, and F. oxysporum f. sp. lycopersici with median effective concentrations (EC50) of 4.1, 3.1, 3.6, and 4.1 µg/mL, respectively, while the corresponding EC50 were 0.14, 6.7, 22.4, and 4.3 µg/mL of the fungicide azoxystrobin; 4.2, 41.7, 0.42, and 0.12 µg/mL of the fungicide carbendazim; and >50, 0.19, 0.43, and BS > 50 µg/mL of the fungicide fluopyram. The inhibitory potency against V. mali fatty acid synthase agreed well with the in vitro antifungal activity. The molecular docking suggested that the 3-acylthiotetronic acid derivatives targeted the C171Q KasA complex. The findings help understanding the mode of action and design and synthesis of novel potent fungicides.


Subject(s)
Enzyme Inhibitors , Fatty Acid Synthases/antagonists & inhibitors , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/pharmacology , Hydroxybutyrates/chemistry , Sulfhydryl Compounds/chemistry , Acylation , Agrochemicals , Ascomycota/drug effects , Crystallography, X-Ray , Drug Design , Fungicides, Industrial/chemistry , Fusarium/drug effects , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Plant Diseases/microbiology
20.
Environ Pollut ; 224: 516-523, 2017 May.
Article in English | MEDLINE | ID: mdl-28259582

ABSTRACT

Pyrethroid insecticides are widely used in urban environments, and their occurrence has been recently associated with aquatic toxicity in urban surface streams. Synthetic pyrethroids are strongly hydrophobic compounds, highlighting the importance of the freely dissolved concentration (Cfree), rather than the total chemical concentration, for better prediction of potential effects in aquatic ecosystems. The goal of this study was to develop a simple, robust and field-applicable passive sampling methodology that may be used for in situ monitoring of trace levels of pyrethroids in surface water. Among a range of polymer films, polyethylene film (PE) was found to be the most efficient at absorbing pyrethroids from water. To circumvent the long equilibrium time, 13C-permethrin and bifenthrin-d5 were preloaded on the PE sampler as performance reference compounds (PRC). Desorption of isotope-labeled PRCs was found to be isotropic to the absorption of target analytes. The optimized method was first tested in large circulating tanks simulating various environmental conditions. The derived Cfree values were consistently smaller than the total aqueous concentration in salt water or water containing humic acids. The PE samplers were further deployed at multiple field sites for 7 d in Southern California and analysis demonstrated good monitoring reproducibility and sensitivity under ambient environmental conditions. The developed passive sampler approach is ideal for application for in situ sampling under field conditions, and the use of PRCs allows sampling with short and flexible time intervals.


Subject(s)
Environmental Monitoring/methods , Insecticides/analysis , Pyrethrins/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Absorption, Physicochemical , California , Environmental Monitoring/instrumentation , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...