Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Se Pu ; 42(7): 681-692, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966976

ABSTRACT

Dynamic changes in the structures and interactions of proteins are closely correlated with their biological functions. However, the precise detection and analysis of these molecules are challenging. Native mass spectrometry (nMS) introduces proteins or protein complexes into the gas phase by electrospray ionization, and then performs MS analysis under near-physiological conditions that preserve the folded state of proteins and their complexes in solution. nMS can provide information on stoichiometry, assembly, and dissociation constants by directly determining the relative molecular masses of protein complexes through high-resolution MS. It can also integrate various MS dissociation technologies, such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD), to analyze the conformational changes, binding interfaces, and active sites of protein complexes, thereby revealing the relationship between their interactions and biological functions. UVPD, especially 193 nm excimer laser UVPD, is a rapidly evolving MS dissociation method that can directly dissociate the covalent bonds of protein backbones with a single pulse. It can generate different types of fragment ions, while preserving noncovalent interactions such as hydrogen bonds within these ions, thereby enabling the MS analysis of protein structures with single-amino-acid-site resolution. This review outlines the applications and recent progress of nMS and UVPD in protein dynamic structure and interaction analyses. It covers the nMS techniques used to analyze protein-small-molecule ligand interactions, the structures of membrane proteins and their complexes, and protein-protein interactions. The discussion on UVPD includes the analysis of gas-phase protein structures and interactions, as well as alterations in protein dynamic structures, and interactions resulting from mutations and ligand binding. Finally, this review describes the future development prospects for protein analysis by nMS and new-generation advanced extreme UV light sources with higher brightness and shorter pulses.


Subject(s)
Mass Spectrometry , Proteins , Ultraviolet Rays , Proteins/chemistry , Mass Spectrometry/methods , Protein Conformation
2.
ACS Appl Mater Interfaces ; 14(8): 10836-10843, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35167262

ABSTRACT

Humidity-responsive polymeric actuators have gained considerable interest due to their great potential in the fields including soft robotics, artificial muscles, smart sensors, and actuators. However, most of them can only exhibit invariable shape changes, which severely restricts their further exploration and practical use. Herein, we report that programmable humidity-responsive actuating behaviors can be realized by introducing photoprogrammable hygroscopic patterns into shape memory polymers. Poly(ethylene-co-acrylic acid) is selected as a model polymer and the solvent-processed thin films are soft and elastic, whose external shapes can be programmed by a modified shape memory process. On another aspect, an Fe3+-carboxylate coordinating network formed by surface treatments can be spatially dissociated under UV, resulting in transient hygroscopic gradients as active joints for moisture-driven actuation. Moreover, we show that the shape memory effect can be an effective means to adjust the direction as well as the amplitude of the moisture-driven actuating behavior. The proposed strategy is convenient and can be generally extended to other shape memory polymers to realize programmable moisture-responsive actuating behaviors.

3.
ACS Appl Mater Interfaces ; 13(32): 38773-38782, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34369771

ABSTRACT

Most humidity-responsive polymeric actuators can only exhibit shape transformations between a planar shape in the dry state and a bended three-dimensional (3D) shape when exposed to moisture, and it is challenging to design and prepare hygroscopic actuators with programmable actuating behaviors displayed from sophisticated 3D structures. Herein, we demonstrate that the integration of shape memory property and surface treatment enabled hygromorphic responsivity endows a single-component polymer film with programmable moisture-driven actuating behaviors. The solvent-processed polyethylene-co-acrylic acid (EAA) copolymer film is soft and stretchable at room temperature, and has a good thermal-responsive shape memory property. By surface treatment using base/acid solutions, the reversible gradient conversion between carboxyl groups and carboxylate salts along the thickness direction enables the film to exhibit designed hygroscopic actuations. The shape memory property and moisture-driven actuating behaviors can be combined to realize 3D-3D morphing by first programming the films into 3D shapes and then conducting the surface treatments. Both shape programming and surface treatment processes can be reprogrammed to make the actuation behavior readily tunable. We also show that the created surface patterns can act as moisture-sensitive conducting paths to detect human breathes, and the combination of shape memory, moisture-responsive morphing and conductivity change leads to some interesting applications such as smart switch in conducting circuit. This work provides a new and general strategy for the design of advanced humidity-responsive actuators.

SELECTION OF CITATIONS
SEARCH DETAIL
...