Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(15): 4665-4671, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587938

ABSTRACT

Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.

2.
Anal Chem ; 96(10): 4180-4189, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38436249

ABSTRACT

Inflammation has been confirmed to be closely related to the development of tumors, while peroxynitrite (ONOO-) is one of the most powerful oxidative pro-inflammatory factors. Although ONOO- can kill bacteria through oxidation, it will activate matrix metalloproteinases (MMPs), accelerate the degradation of the extracellular matrix (ECM), and subsequently lead to the activation and release of other tumor promotion factors existing in the ECM, promoting tumor metastasis and invasion. Herein, we report a simple aggregation-induced emission (AIE) nanoprobe (NP), TPE-4NMB, that can simultaneously visualize and deplete ONOO-. The probe can light up the endogenous and exogenous ONOO- in cells and selectively inhibit the proliferation and migration of 4T1 cells by inducing an intracellular redox homeostasis imbalance through ONOO- depletion. After being modified with DSPE-PEG2000, the TPE-4NMB NPs can be used to image ONOO- induced by various models in vivo; especially, it can monitor the dynamic changes of ONOO- level in the residual tumor after surgery, which can provide evidence for clarifying the association between surgery, ONOO-, and cancer metastasis. Excitingly, inhibited tumor volume growth and decreased counts of lung metastases were observed in the TPE-4NMB NPs group, which can be attributed to the downregulated expression of MMP-9 and transforming growth factor-ß (TGF-ß), increased cell apoptosis, and inhibited epithelial-mesenchymal transition (EMT) mediated by ONOO-. The results will provide new evidence for clarifying the relationship between surgery, ONOO-, and tumor metastasis and serve as a new intervention strategy for preventing tumor metastasis after tumor resection.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Humans , Female , Peroxynitrous Acid , Lung Neoplasms/prevention & control , Transforming Growth Factor beta , Matrix Metalloproteinases/metabolism , Fluorescent Dyes
3.
Adv Mater ; 36(19): e2312805, 2024 May.
Article in English | MEDLINE | ID: mdl-38319917

ABSTRACT

Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.

4.
Adv Mater ; 36(3): e2308061, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37734746

ABSTRACT

Though encouraging performance is achieved in small-area organic photovoltaics (OPVs), reducing efficiency loss when evoluted to large-area modules is an important but unsolved issue. Considering that polymer materials show benefits in film-forming processability and mechanical robustness, a high-efficiency all-polymer OPV module is demonstrated in this work. First, a ternary blend consisting of two polymer donors, PM6 and PBQx-TCl, and one polymer acceptor, PY-IT, is developed, with which triplet state recombination is suppressed for a reduced energy loss, thus allowing a higher voltage; and donor-acceptor miscibility is compromised for enhanced charge transport, thus resulting in improved photocurrent and fill factor; all these contribute to a champion efficiency of 19% for all-polymer OPVs. Second, the delayed crystallization kinetics from solution to film solidification is achieved that gives a longer operation time window for optimized blend morphology in large-area module, thus relieving the loss of fill factor and allowing a record efficiency of 16.26% on an upscaled module with an area of 19.3 cm2 . Besides, this all-polymer system also shows excellent mechanical stability. This work demonstrates that all-polymer ternary systems are capable of solving the upscaled manufacturing issue, thereby enabling high-efficiency OPV modules.

5.
Adv Mater ; 36(11): e2307280, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100730

ABSTRACT

The development of intrinsically stretchable organic photovoltaics (is-OPVs) with a high efficiency is of significance for practical application. However, their efficiencies lag far behind those of rigid or even flexible counterparts. To address this issue, an advanced top-illuminated OPV is designed and fabricated, which is intrinsically stretchable and has a high performance, through systematic optimizations from material to device. First, the stretchability of the active layer is largely increased by adding a low-elastic-modulus elastomer of styrene-ethylene-propylene-styrene tri-block copolymer (SEPS). Second, the stretchability and conductivity of the opaque electrode are enhanced by a conductive polymer/metal (denoted as M-PH1000@Ag) composite electrode strategy. Third, the optical and electrical properties of a sliver nanowire transparent electrode are improved by a solvent vapor annealing strategy. High-performance is-OPVs are successfully fabricated with a top-illuminated structure, which provides a record-high efficiency of 16.23%. Additionally, by incorporating 5-10% elastomer, a balance between the efficiency and stretchability of the is-OPVs is achieved. This study provides valuable insights into material and device optimizations for high-efficiency is-OPVs, with a low-cost production and excellent stretchability, which indicates a high potential for future applications of OPVs.

6.
Anal Chem ; 95(34): 12648-12655, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37599579

ABSTRACT

Single-atom catalysts (SACs), a novel kind of electrocatalysts with full metal utilization, have been developed as unique signal amplifiers in several sensing platforms. Herein, based on theoretical prediction of the oxygen reduction reaction (ORR) mechanism on different atom sites, we constructed dual-atomic-site catalysts (DACs), Fe/Mn-N-C, to catalyze luminol-dissolved oxygen electrochemiluminescence (ECL). Computational simulation indicated that the weak adsorption of OH* on a single Fe site was overcome by introducing Mn as the secondary metallic active site, resulting in a synergic dual-site cascade mechanism. The superior catalytic activity of Fe/Mn-N-C DACs for the ORR was proven by the highly efficient cathodic luminol ECL, surpassing the performance of single-site catalysts (SACs), Fe-N-C and Mn-N-C. Furthermore, the ECL system, enhanced by a cascade reaction, exhibited remarkable sensitivity to ascorbic acid, with a detection limit of 0.02 nM. This research opens up opportunities for enhancing both the ECL efficiency and sensing performance by employing a rational atomic-scale design for DACs.

7.
Angew Chem Int Ed Engl ; 62(40): e202308595, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37551967

ABSTRACT

Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.

8.
Cancer Immunol Immunother ; 72(9): 3079-3095, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37351605

ABSTRACT

Photodynamic therapy (PDT) is an emerging clinical treatment that is expected to become an important adjuvant strategy for the immunotherapeutic cancer treatment. Recently, numerous works have reported combination strategies. However, clinical data showed that the anti-tumor immune response of PDT was not lasting though existing. The immune activation effect will eventually turn to immunosuppressive effect and get aggravated at the late stage post-PDT. So far, the mechanism is still unclear, which limits the design of specific correction strategies and further development of PDT. Several lines of evidence suggest a role for TGF-ß1 in the immunosuppression associated with PDT. Herein, this study systematically illustrated the dynamic changes of immune states post-PDT within the tumor microenvironment. The results clearly demonstrated that high-light-dose PDT, as a therapeutic dose, induced early immune activation followed by late immunosuppression, which was mediated by the activated TGF-ß1 upregulation. Then, the mechanism of PDT-induced TGF-ß1 accumulation and immunosuppression was elucidated, including the ROS/TGF-ß1/MMP-9 positive feedback loop and CD44-mediated local amplification, which was further confirmed by spatial transcriptomics, as well as by the extensive immune inhibitory effect of local high concentration of TGF-ß1. Finally, a TGF-ß blockade treatment strategy was presented as a promising combinational strategy to reverse high-light-dose PDT-associated immunosuppression. The results of this study provide new insights for the biology mechanism and smart improvement approaches to enhance tumor photodynamic immunotherapy.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Transforming Growth Factor beta1 , Photochemotherapy/methods , Immunosuppression Therapy , Neoplasms/drug therapy , Transforming Growth Factor beta , Cell Line, Tumor , Tumor Microenvironment
9.
Nano Lett ; 23(10): 4572-4578, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37171253

ABSTRACT

In this study, we proposed a novel imaging technique, photoinduced electrogenerated chemiluminescence microscopy (PECLM), to monitor redox reactions driven by hot carriers on single gold nanoparticles (AuNPs) on TiO2. Under laser irradiation, plasmon-generated hot carriers were separated by an electric field, leaving hot holes on the surface of AuNPs to drive ECL reactions. PECL intensity was highly sensitive to the number of hot carriers. Through quantitative image analysis, we found that PECL density on individual AuNPs decreased significantly with an increase in particle diameter, indicating that particle size has a significant impact on photoelectrochemical conversion efficiency. For the first time, we verified the feasibility of PECLM in mapping the catalytic activity of single photocatalysts. PECLM opens a new prospect for the in situ imaging of photocatalysis in a high-throughput way, which not only facilitates the optimization of plasmonic photocatalysts but also contributes to the dynamic study of photocatalytic processes on micro/nanointerfaces.

10.
Adv Mater ; 35(32): e2302927, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178458

ABSTRACT

Semi-transparent organic solar cells (ST-OSCs) have great potential for application in vehicle- or building-integrated solar energy harvesting. Ultrathin active layers and electrodes are typically utilized to guarantee high power conversion efficiency (PCE) and high average visible transmittance (AVT) simultaneously; however, such ultrathin parts are unsuitable for industrial high-throughput manufacturing. In this study, ST-OSCs are fabricated using a longitudinal through-hole architecture to achieve functional region division and to eliminate the dependence on ultrathin films. A complete circuit that vertically corresponds to the silver grid is responsible for obtaining high PCE, and the longitudinal through-holes embedded in it allow most of the light to pass through,where the overall transparency is associated with the through-hole specification rather than the thicknesses of active layer and electrode. Excellent photovoltaic performance over a wide range of transparency (9.80-60.03%), with PCEs ranging from 6.04% to 15.34% is achieved. More critically, this architecture allows printable 300-nm-thick devices to achieve a record-breaking light utilization efficiency (LUE) of 3.25%, and enables flexible ST-OSCs to exhibit better flexural endurance by dispersing the extrusion stress into the through-holes. This study paves the way for fabricating high-performance ST-OSCs and shows great promise for the commercialization of organic photovoltaics.

11.
J Pharm Sci ; 112(9): 2483-2493, 2023 09.
Article in English | MEDLINE | ID: mdl-37023852

ABSTRACT

New drug delivery systems have rarely been used in the formulation of traditional Chinese medicine, especially those that are crude active Chinese medicinal ingredients. In the present study, hyaluronic acid decorated lipid-polymer hybrid nanoparticles were used to prepare a targeted drug delivery system (TDDS) for total alkaloid extract from Picrasma quassioides (TAPQ) to improve its targeting property and anti-inflammatory activity. Picrasma quassioides, a common-used traditional Chinese medicine (TCM), containing a series of hydrophobic total alkaloids including ß-carboline and canthin-6-one alkaloids show great anti-inflammatory activity. However, its high toxicity (IC50= 8.088±0.903 µg/ml), poor water solubility (need to dissolve with 0.8% Tween-80) and poor targeting property severely limits its clinical application. Herein, hyaluronic acid (HA) decorated lipid-polymer hybrid nanoparticles loaded with TAPQ (TAPQ-NPs) were designed to overcome above mentioned deficiencies. TAPQ-NPs have good water solubility, strong anti-inflammatory activity and great joint targeting property. The in vitro anti-inflammatory activity assay showed that the efficacy of TAPQ-NPs was significantly higher than TAPQ(P<0.001). Animal experiments showed that the nanoparticles had good joint targeting property and had strong inhibitory activity against collagen-induced arthritis (CIA). These results indicate that the application of this novel targeted drug delivery system in the formulation of traditional Chinese medicine is feasible.


Subject(s)
Alkaloids , Antineoplastic Agents , Arthritis, Experimental , Picrasma , Rats , Animals , Picrasma/chemistry , Molecular Structure , Arthritis, Experimental/drug therapy , Hyaluronic Acid , Alkaloids/chemistry , Alkaloids/pharmacology , Drug Delivery Systems , Anti-Inflammatory Agents/chemistry , Lipids , Water
12.
ACS Appl Mater Interfaces ; 15(3): 4275-4283, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36645327

ABSTRACT

Solving the contradiction between good solubility and dense packing is a challenge in designing high-performance nonfullerene acceptors. Herein, two simple nonfused ring electron acceptors (o-AT-2Cl and m-AT-2Cl) carrying ortho- or meta-substituted hexyloxy side chains can be facilely synthesized in only three steps. The two ortho-substituted phenyl side chains in o-AT-2Cl cannot freely rotate due to a big steric hindrance, which endows the acceptor with good solubility. Moreover, o-AT-2Cl displays a more ordered packing than m-AT-2Cl as revealed by the absorption measurement. When blended with polymer donor D18 for the fabrication of organic solar cells (OSCs), o-AT-2Cl-based devices exhibit a favorable morphology, more efficient exciton dissociation, and better charge transport. Consequently, the optimal OSCs based on D18:o-AT-2Cl exhibit a power conversion efficiency (PCE) of 12.8%, which is significantly higher than the moderate PCE (7.66%) for D18:m-AT-2Cl-based devices. Remarkably, o-AT-2Cl shows a higher figure-of-merit value compared with classic high-efficiency fused ring electron acceptors. As a result, our research succeeds in obtaining nonfused ring acceptors with cost-effective photovoltaic performance and provides a valuable experience for simultaneously improving solubility as well as ensuring ordered packing of acceptors through regulating the steric hindrance via changing the position of substituents.

13.
Cancers (Basel) ; 14(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36428687

ABSTRACT

Breast cancer (BC) is a serious threat to women's health and metastasis is the major cause of BC-associated mortality. Various techniques are currently used to preoperatively describe the metastatic status of tumors, based on which a comprehensive treatment protocol was determined. However, accurately staging a tumor before surgery remains a challenge, which may lead to the miss of optimal treatment options. More severely, the failure to detect and remove occult micrometastases often causes tumor recurrences. There is an urgent need to develop a more precise and non-invasive strategy for the detection of the tumor metastasis in lymph nodes and distant organs. Based on the facts that tumor metastasis is closely related to the primary tumor microenvironment (TME) evolutions and that metabolomics profiling of the circulatory system can precisely reflect subtle changes within TME, we suppose whether metabolomic technology can be used to achieve non-invasive and real-time monitoring of BC metastatic status. In this study, the metastasis status of BC mouse models with different tumor-bearing times was firstly depicted to mimic clinical anatomic TNM staging system. Metabolomic profiling together with metastasis-related changes in TME among tumor-bearing mice with different metastatic status was conducted. A range of differential metabolites reflecting tumor metastatic states were screened and in vivo experiments proved that two main metastasis-driving factors in TME, TGF-ß and hypoxia, were closely related to the regular changes of these metabolites. The differential metabolites level changes were also preliminarily confirmed in a limited number of clinical BC samples. Metabolite lysoPC (16:0) was found to be useful for clinical N stage diagnosis and the possible cause of its changes was analyzed by bioinformatics techniques.

14.
Adv Mater ; 34(50): e2206717, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36189867

ABSTRACT

In contrast to classical bulk heterojunction (BHJ) in organic solar cells (OSCs), the quasi-homojunction (QHJ) with extremely low donor content (≤10 wt.%) is unusual and generally yields much lower device efficiency. Here, representative polymer donors and nonfullerene acceptors are selected to fabricate QHJ OSCs, and a complete picture for the operation mechanisms of high-efficiency QHJ devices is illustrated. PTB7-Th:Y6 QHJ devices at donor:acceptor (D:A) ratios of 1:8 or 1:20 can achieve 95% or 64% of the efficiency obtained from its BHJ counterpart at the optimal D:A ratio of 1:1.2, respectively, whereas QHJ devices with other donors or acceptors suffer from rapid roll-off of efficiency when the donors are diluted. Through device physics and photophysics analyses, it is observed that a large portion of free charges can be intrinsically generated in the neat Y6 domains rather than at the D/A interface. Y6 also serves as an ambipolar transport channel, so that hole transport as also mainly through Y6 phase. The key role of PTB7-Th is primarily to reduce charge recombination, likely assisted by enhancing quadrupolar fields within Y6 itself, rather than the previously thought principal roles of light absorption, exciton splitting, and hole transport.

15.
ACS Appl Mater Interfaces ; 14(39): 44685-44696, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36153967

ABSTRACT

The morphology with strong molecular packing order and gradient vertical composition distribution associated with efficient charge transport and collection is critical to achieve high performance in nonfullerene solar cells. However, the rapid solidification process of the active layer upon the fast removal of solvent usually results in a kinetically trapped state with undesired morphology. Herein, we proposed a strategy to extend the crystal growth time of the acceptor via a high-boiling-point additive that selectively dissolved the acceptor. This was enabled by adding dibenzyl ether (DBE) to the poly(3-hexylthiophene) (P3HT):O-IDTBR blend in chlorobenzene (CB) solution. The combination of the kinetic study by time-resolved ultraviolet-visible (UV-vis) absorption spectra and detailed morphological characterization allows us to correlate the crystallization kinetics with the microstructural transition. The results show that the crystal growth time of O-IDTBR increases from 3 to 60 s upon the addition of 0.75% DBE, leading to further evolution of the molecular order of O-IDTBR during the DBE-dominated drying period. Meanwhile, O-IDTBR has more time to migrate toward the substrate owing to the larger surface energy. In addition, the onset of the crystallization process of P3HT is brought forward from 8 to 6 s due to the reduced solvent quality, which favors P3HT to crystallize into a fibril network. As a result, an optimized morphology that features the enhanced molecular packing order of P3HT and O-IDTBR as well as the vertical compositional gradient of O-IDTBR is obtained. Devices based on the optimized blend show more balanced charge transport and suppressed bimolecular recombination, giving rise to an improved power conversion efficiency (PCE) from 4.29 ± 0.04 to 7.30 ± 0.12%.

16.
Adv Mater ; 34(42): e2205926, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36027579

ABSTRACT

Efficient exciton diffusion and charge transport play a vital role in advancing the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, a facile strategy is presented to simultaneously enhance exciton/charge transport of the widely studied PM6:Y6-based OSCs by employing highly emissive trans-bis(dimesitylboron)stilbene (BBS) as a solid additive. BBS transforms the emissive sites from a more H-type aggregate into a more J-type aggregate, which benefits the resonance energy transfer for PM6 exciton diffusion and energy transfer from PM6 to Y6. Transient gated photoluminescence spectroscopy measurements indicate that addition of BBS improves the exciton diffusion coefficient of PM6 and the dissociation of PM6 excitons in the PM6:Y6:BBS film. Transient absorption spectroscopy measurements confirm faster charge generation in PM6:Y6:BBS. Moreover, BBS helps improve Y6 crystallization, and current-sensing atomic force microscopy characterization reveals an improved charge-carrier diffusion length in PM6:Y6:BBS. Owing to the enhanced exciton diffusion, exciton dissociation, charge generation, and charge transport, as well as reduced charge recombination and energy loss, a higher PCE of 17.6% with simultaneously improved open-circuit voltage, short-circuit current density, and fill factor is achieved for the PM6:Y6:BBS devices compared to the devices without BBS (16.2%).

17.
Adv Mater ; 34(31): e2202659, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35698785

ABSTRACT

Organic solar cells (OSCs) are promising candidates for next-generation photovoltaic technologies, with their power conversion efficiencies (PCEs) reaching 19%. However, the typically used spin-coating method, toxic halogenated processing solvents, and the conventional bulk-heterojunction (BHJ), which causes excessive charge recombination, hamper the commercialization and further efficiency promotion of OSCs. Here, a simple but effective dual-slot-die sequential processing (DSDS) strategy is proposed to address the above issues by achieving a continuous solution supply, avoiding the solubility limit of the nonhalogen solvents, and creating a graded-BHJ morphology. As a result, an excellent PCE of 17.07% is obtained with the device processed with o-xylene in an open-air environment with no post-treatment required, while a PCE of over 14% is preserved in a wide range of active-layer thickness. The unique film-formation mechanism is further identified during the DSDS processing, which suggests the formation of the graded-BHJ morphology by the mutual diffusion between the donor and acceptor and the subsequent progressive aggregation. The graded-BHJ structure leads to improved charge transport, inhibited charge recombination, and thus an excellent PCE. Therefore, the newly developed DSDS approach can effectively contribute to the realm of high-efficiency and eco-friendly OSCs, which can also possibly be generalized to other organic photoelectric devices.

18.
Drug Deliv ; 29(1): 1358-1369, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35506467

ABSTRACT

The antitumor immune response induced by chemotherapy has attracted considerable attention. However, the immunosuppressive tumor microenvironment hinders the immune activation effect of cancer chemotherapy. TGF-ß plays a key role in driving tumor immunosuppression and can prevent effective antitumor immune response through multiple roles. In this study, a dual-responsive prodrug micelle (PAOL) is designed to co-deliver LY2109761 (a TGF-ß receptor I/II inhibitor) and oxaliplatin (OXA, a conventional chemotherapy) to remodel tumor microenvironment and trigger immunogenic cell death (ICD) to induce antitumor immunity response. Under hypoxia tumor environment, the polyethylene glycol shell of the micelle cleavages, along with the release of LY2109761 and OXA prodrug. Cytotoxic effect of OXA is then activated by glutathione-mediated reduction in tumor cells and the activated OXA significantly enhances tumor immunogenicity and promotes intratumoral accumulation of cytotoxic T lymphocytes. Meanwhile, TGF-ß blockade through LY2109761 reprograms tumor microenvironment by correcting the immunosuppressive state and regulating tumor extracellular matrix, which further maintaining OXA induced immune response. Therefore, due to the capability of boosting tumor-specific antitumor immunity, the bifunctional micelle presents markedly synergistic antitumor efficacies and provides a potent therapeutic strategy for chemoimmunotherapy of solid tumors.


Subject(s)
Prodrugs , Immunotherapy , Micelles , Prodrugs/pharmacology , Transforming Growth Factor beta , Tumor Microenvironment
19.
Small ; 18(17): e2200608, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35344263

ABSTRACT

Controlled morphology of solution-processed thin films have realized impressive achievements for non-fullerene acceptor (NFA)-based organic solar cells (OSCs). Given the large set of donor-acceptor pairs, employing various processing conditions to realize optimal morphology for high efficiency and stable OSCs is a strenuous task. Therefore, comprehensive correlations between processing conditions and morphology evolution pathways have to be developed for efficient performance and stability of devices. Within the framework of the blend system, crystallization transitions of NFA molecules are tracked utilizing the first heating scan of differential scanning calorimeter (DSC) measurement correlating with respective morphology evolution of blend films. Real-time dynamics measurements and morphology characterizations are combined to provide optimal morphology transition pathways as NFA molecules are shown to be released from the mixed-phase to form balanced ordered packing with variant processing conditions. Polymer:NFA films are fabricated using blade coating incorporating solvent additive or thermal annealing as processing conditions as a correlation is formulated between performance and stability of solar cells with morphology transition pathways. This work demonstrates the significance of processing condition-controlled transition pathways for the realization of optimal morphology leading to superior OSC devices.

20.
Nucleic Acids Res ; 50(3): 1517-1530, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35048968

ABSTRACT

Expression of the E3 ligase TRIM21 is increased in a broad spectrum of cancers; however, the functionally relevant molecular pathway targeted by TRIM21 overexpression remains largely unknown. Here, we show that TRIM21 directly interacts with and ubiquitinates CLASPIN, a mediator for ATR-dependent CHK1 activation. TRIM21-mediated K63-linked ubiquitination of CLASPIN counteracts the K6-linked ubiquitination of CLASPIN which is essential for its interaction with TIPIN and subsequent chromatin loading. We further show that overexpression of TRIM21, but not a TRIM21 catalytically inactive mutant, compromises CHK1 activation, leading to replication fork instability and tumorigenesis. Our findings demonstrate that TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination, providing a potential target for cancer therapy.


Subject(s)
DNA Replication , Protein Kinases , Cell Cycle Proteins/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...