Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 850358, 2022.
Article in English | MEDLINE | ID: mdl-35432319

ABSTRACT

Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Epitopes , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Tumor Microenvironment
2.
Haematologica ; 95(1): 126-34, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19679884

ABSTRACT

BACKGROUND: The Wilms' tumor antigen (WT1) is an attractive target for immunotherapy of leukemia. In the past, we isolated and characterized the specificity and function of a WT1-specific T-cell receptor. The goal of this translational study was to develop a safe and efficient WT1-T-cell receptor retroviral vector for an adoptive immunotherapy trial with engineered T cells. DESIGN AND METHODS: We generated a panel of retroviral constructs containing unmodified or codon-optimized WT1-T-cell receptor alpha and beta genes, linked via internal ribosome entry sites or 2A sequences, with or without an additional inter-chain disulfide bond in the T-cell receptor constant domains. These constructs were functionally analyzed in vitro, and the best one was tested in an autologous primary leukemia model in vivo. RESULTS: We identified a WT1-T-cell receptor construct that showed optimal tetramer staining, antigen-specific cytokine production and killing activity when introduced into primary human T cells. Fresh CD34(+) cells purified from a patient with leukemia were engrafted into NOD/SCID mice, followed by adoptive immunotherapy with patient's autologous T cells transduced with the WT1-T-cell receptor. This therapeutic treatment evidently decreased leukemia engraftment in mice and resulted in a substantial improvement of leukemia-free survival. CONCLUSIONS: This is the first report that patient's T cells, engineered to express the WT1-T-cell receptor, can eliminate autologous leukemia progenitor cells in an in vivo model. This study provides a firm basis for the planned WT1-T-cell receptor gene therapy trial in leukemia patients.


Subject(s)
Antigens, Neoplasm/immunology , Blast Crisis/immunology , Genetic Engineering/methods , Leukemia/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/pathology , Wilms Tumor/pathology , Adult , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Blast Crisis/genetics , Blast Crisis/therapy , Genetic Therapy/methods , Genetic Vectors/biosynthesis , Genetic Vectors/chemistry , Hepatitis B Virus, Woodchuck/genetics , Humans , Jurkat Cells , Leukemia/genetics , Leukemia/therapy , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Autologous/immunology , Wilms Tumor/immunology , Wilms Tumor/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...