Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Cell Mol Med ; 28(8): e18332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661644

ABSTRACT

The role of KIAA0040 role in glioma development is not yet understood despite its connection to nervous system diseases. In this study, KIAA0040 expression levels were evaluated using qRT-PCR, WB and IHC, and functional assays were conducted to assess its impact on glioma progression, along with animal experiments. Moreover, WB was used to examine the impact of KIAA0040 on the JAK2/STAT3 signalling pathway. Our study found that KIAA0040 was increased in glioma and linked to tumour grade and poor clinical outcomes, serving as an independent prognostic factor. Functional assays showed that KIAA0040 enhances glioma growth, migration and invasion by activating the JAK2/STAT3 pathway. Of course, KIAA0040 enhances glioma growth by preventing tumour cell death and promoting cell cycle advancement. Our findings suggest that targeting KIAA0040 could be an effective treatment for glioma due to its role in promoting aggressive tumour behaviour and poor prognosis.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , Animals , Female , Humans , Male , Mice , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Mice, Nude , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
2.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38592730

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Subject(s)
Photothermal Therapy , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Animals , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Immunotherapy , Phototherapy/methods
3.
Int J Nanomedicine ; 19: 2377-2393, 2024.
Article in English | MEDLINE | ID: mdl-38469058

ABSTRACT

Chronic kidney diseases (CKD) present a formidable global health challenge, characterized by a deficiency of effective treatment options. Extracellular vesicles (EVs), recognized as multifunctional drug delivery systems in biomedicine, have gained accumulative interest. Specifically, engineered EVs have emerged as a promising therapeutic approach for targeted drug delivery, potentially addressing the complexities of CKD management. In this review, we systematically dissect EVs, elucidating their classification, biogenesis, composition, and cargo molecules. Furthermore, we explore techniques for EV engineering and strategies for their precise renal delivery, focusing on cargo loading and transportation, providing a comprehensive perspective. Moreover, this review also discusses and summarizes the diverse therapeutic applications of engineered EVs in CKD, emphasizing their anti-inflammatory, immunomodulatory, renoprotective, and tissue-regenerating effects. It critically evaluates the challenges and limitations in translating EV therapies from laboratory settings to clinical applications, while outlining future prospects and emerging trends.


Subject(s)
Extracellular Vesicles , Renal Insufficiency, Chronic , Humans , Drug Delivery Systems/methods , Renal Insufficiency, Chronic/therapy , Kidney , Anti-Inflammatory Agents
4.
IUBMB Life ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551358

ABSTRACT

Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.

5.
J Cell Mol Med ; 28(7): e18166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38506080

ABSTRACT

Although MRPS16 is involved in cancer development, its mechanisms in developing LAUD remain unclear. Herein, qRT-PCR, WB and IHC were utilized for evaluating MRPS16 expression levels, while functional assays besides animal experiments were performed to measure MRPS16 effect on LAUD progression. Using WB, the MRPS16 effect on PI3K/AKT/Frataxin signalling pathway was tested. According to our study, MRPS16 was upregulated in LAUD and was correlated to the advanced TNM stage as well as poor clinical outcomes, which represent an independent prognostic factor. Based on functional assays, MRPS16 is involved in promoting LAUD growth, migration and invasion, which was validated further in subsequent analyses through PI3K/AKT/Frataxin pathway activation. Moreover, MRPS16-knockdown-mediated Frataxin overexpression was shown to restore the reduction in tumour cells proliferation, migration and invasion. Our results revealed that MRPS16 caused an aggressive phenotype to LAUD and was a poor prognosticator; thus, targeting MRPS16 may be effectual in LAUD treatment.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Frataxin , Cell Line, Tumor , Cell Proliferation/genetics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/pathology , Cell Movement/genetics
6.
J Exp Clin Cancer Res ; 42(1): 289, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37915049

ABSTRACT

BACKGROUND: TAMs (tumor-associated macrophages) infiltration promotes the progression of esophageal cancer (EC). However, the underlying mechanisms remain unclear. METHODS: Abnormal expression of LINC01592 from EC microarrays of the TCGA database was analyzed. LINC01592 expression level was validated in both EC cell lines and tissues. Stable LINC01592 knockdown and overexpression of EC cell lines were established. In vitro and in vivo trials were conducted to test the impact of LINC01592 knockdown and overexpression on EC cells. RNA binding protein immunoprecipitation (RIP), RNA pulldown assays, and Immunofluorescence (IF) were used to verify the combination of E2F6 and LINC01592. The combination of E2F6 and NBR1 was verified through the utilization of ChIP and dual luciferase reporter assays. RESULTS: LINC01592 is carried and transferred by exosomes secreted by M2-TAMs to tumor cells. The molecular mechanism underlying the promotion of NBR1 transcription involves the direct binding of LINC01592 to E2F6, which facilitates the nuclear entry of E2F6. The collaborative action of LINC01592 and E2F6 results in improved NBR1 transcription. The elevation of NBR1 binding to the ubiquitinated protein MHC-I via the ubiquitin domain caused a higher degradation of MHC-I in autophagolysosomes and a reduction in MHC-I expression on the exterior of cancerous cell. Consequently, this caused cancerous cells to escape from CD8+ CTL immune attack. The tumor-promoting impacts of LINC01592, as well as the growth of M2-type macrophage-driven tumors, were significantly suppressed by the interruption of E2F6/NBR1/MHC-I signaling through the effect of siRNA or the corresponding antibody blockade. Significantly, the suppression of LINC01592 resulted in an upregulation of MHC-I expression on the tumor cell membrane, thereby enhancing the efficacy of CD8+ T cell reinfusion therapy. CONCLUSIONS: The investigation conducted has revealed a significant molecular interaction between TAMs and EC via the LINC01592/E2F6/NBR1/MHC-I axis, which facilitates the progression of malignant tumors. This suggests that a therapeutic intervention targeting this axis may hold promise for the treatment of the disease.


Subject(s)
Esophageal Neoplasms , Exosomes , Humans , Tumor-Associated Macrophages , Exosomes/genetics , Esophageal Neoplasms/pathology , RNA, Small Interfering/genetics , Macrophages/metabolism , Cell Line, Tumor
7.
Genomics Proteomics Bioinformatics ; 20(2): 288-303, 2022 04.
Article in English | MEDLINE | ID: mdl-35609771

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis. Previous studies have indicated that celastrol (CSR) has strong anti-inflammatory and immune-inhibitory effects. Here, we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model, and addressed the mechanism by which CSR exerts the protective effects. We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining, intestinal permeability assay, cytokine assay, flow cytometry, fecal microbiota transplantation (FMT), 16S rRNA sequencing, untargeted metabolomics, and cell differentiation. CSR administration significantly ameliorated the dextran sodium sulfate (DSS)-induced colitis in mice, which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index (DAI) score and intestinal permeability. Meanwhile, CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels, and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis. Notably, all the therapeutic effects were exerted in a gut microbiota-dependent manner. Furthermore, CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites, which is probably associated with the gut microbiota-mediated protective effects. In conclusion, this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate/adverse effects , RNA, Ribosomal, 16S/genetics , Colitis/drug therapy , Colitis/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation
8.
Biosci Biotechnol Biochem ; 83(11): 2128-2139, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31282254

ABSTRACT

This study investigated the contents of saponins and phenolic compounds in relation to their antioxidant activity and α-glucosidase inhibition activity of 7 colored quinoa varieties. The total saponin content was significantly different among 7 varieties and ranged from 7.51 to 12.12 mg OAE/g DW. Darker quinoa had a higher content of phenolic compounds, as well as higher flavonoids and antioxidant activity than that of light varieties. Nine individual phenolic compounds were detected in free and bound form, with gallic acid and ferulic acid representing the major compounds. The free and bound phenolic compounds (gallic acid and ferulic acid in particular) exhibited high linear correlation with their corresponding antioxidant values. In addition, the free phenolic extracts from colored quinoa exhibited higher inhibitory activity against α-glucosidase than the bound phenolic extracts. These findings imply that colored quinoa with abundant bioactive phytochemicals could be an important natural source for preparing functional food.


Subject(s)
Antioxidants/pharmacology , Chenopodium quinoa/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Phenols/pharmacology , Saponins/pharmacology , alpha-Glucosidases/metabolism , Animals , Antioxidants/analysis , Flavonoids/analysis , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/analysis , Phenols/analysis , Rats , Saponins/analysis
10.
Zhongguo Zhong Yao Za Zhi ; 35(15): 1996-2000, 2010 Aug.
Article in Chinese | MEDLINE | ID: mdl-20931854

ABSTRACT

OBJECTIVE: To investigate the effect of dracorhodin perchlorate (DP) on inhibiting high glucose-induced serum and glucocorticoid induced protein kinase 1 (SGK1) and fibronectin (FN) expression in human mesangial cells (HMC), and its mechanism of prevention and treatment on renal fibrosis in diabetic nephropathy (DN) . METHOD: The HMC were divided into normal glucose group (NG group, 5.5 mmol x L(-1) D-glucose), normal glucose +low DP group (NG + LDP group, 5.5 mmol x L(-1) D-glucose +7.5 micromol x L(-1) DP), normal glucose +high DP group (NG + HDP group, 5.5 mmol x L(-1) D-glucose + 15 micromol x L(-1) DP), high glucose group (HG group,25 mmol x L(-1) D-glucose), high glucose +low DP group (HG + LDP group, 25 mmol x L(-1) D-glucose + 7.5 micromol x L(-1) DP)and high glucose +high DP group (HG +HDP group, 25 mmol x L(-1) D-glucose + 15 micromol x L(-1) DP). Each group was examined at 24 hours. The levels of SGK1 and FN mRNA was detected by real-time fluorescence quantitative PCR,and the expression of SGK1 and FN protein was detected by Western blot or indirect immunofluorescence. RESULT: A basal level of SGK1 and FN in HMC were detected in NG group, and the level of SGK1 and FN mRNA and protein were not evidently different compared to that of NG group adding 7.5 micromol x L(-1) DP for 24 hours. On the other hand, the levels of SGK1 and FN mRNA and protein were obviously decreased by adding 15 micromol x L(-1) DP for 24 hours. Compared to NG group, the levels of SGK1 and FN mRNA and protein were increased in HG group after stimulating for 24 hours (P < 0.01). Compared to HG group, the level of SGK1 and FN mRNA and protein were evidently reduced in HG + LDP and HG + HDP groups by adding 7.5 micromol x L(-1) DP and 15 micromol x L(-1) DP for 24 hours (P < 0.01). CONCLUSION: Dracorhodin perchlorate can inhibit high glucose-induced serum and glucocorticoid induced protein kinase 1 (SGK1) and fibronectin(FN) expression in human mesangial cells, and this may be part of the mechanism of preventing and treating renal fibrosis of DN.


Subject(s)
Benzopyrans/pharmacology , Diabetic Nephropathies/genetics , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Fibronectins/genetics , Gene Expression/drug effects , Glucose/metabolism , Immediate-Early Proteins/genetics , Mesangial Cells/drug effects , Perchlorates/pharmacology , Protein Serine-Threonine Kinases/genetics , Cell Line , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/metabolism , Fibronectins/biosynthesis , Humans , Immediate-Early Proteins/metabolism , Mesangial Cells/enzymology , Mesangial Cells/metabolism , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...