Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1403060, 2024.
Article in English | MEDLINE | ID: mdl-38779066

ABSTRACT

Paclitaxel (trade name Taxol) is a rare diterpenoid with anticancer activity isolated from Taxus. At present, paclitaxel is mainly produced by the semi-synthetic method using extract of Taxus tissues as raw materials. The studies of regulatory mechanisms in paclitaxel biosynthesis would promote the production of paclitaxel through tissue/cell culture approaches. Here, we systematically identified 990 transcription factors (TFs), 460 microRNAs (miRNAs), and 160 phased small interfering RNAs (phasiRNAs) in Taxus chinensis to explore their interactions and potential roles in regulation of paclitaxel synthesis. The expression levels of enzyme genes in cone and root were higher than those in leaf and bark. Nearly all enzyme genes in the paclitaxel synthesis pathway were significantly up-regulated after jasmonate treatment, except for GGPPS and CoA Ligase. The expression level of enzyme genes located in the latter steps of the synthesis pathway was significantly higher in female barks than in male. Regulatory TFs were inferred through co-expression network analysis, resulting in the identification of TFs from diverse families including MYB and AP2. Genes with ADP binding and copper ion binding functions were overrepresented in targets of miRNA genes. The miRNA targets were mainly enriched with genes in plant hormone signal transduction, mRNA surveillance pathway, cell cycle and DNA replication. Genes in oxidoreductase activity, protein-disulfide reductase activity were enriched in targets of phasiRNAs. Regulatory networks were further constructed including components of enzyme genes, TFs, miRNAs, and phasiRNAs. The hierarchical regulation of paclitaxel production by miRNAs and phasiRNAs indicates a robust regulation at post-transcriptional level. Our study on transcriptional and posttranscriptional regulation of paclitaxel synthesis provides clues for enhancing paclitaxel production using synthetic biology technology.

2.
Hortic Res ; 11(3): uhae027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38544548

ABSTRACT

Plant tissue regeneration is critical for genetic transformation and genome editing techniques. During the regeneration process, changes in epigenetic modifications accompany the cell fate transition. However, how allele-specific DNA methylation in two haplotypes contributes to the transcriptional dynamics during regeneration remains elusive. Here we applied an inter-species hybrid poplar (Populus alba × P. glandulosa cv. 84 K) as a system to characterize the DNA methylation landscape during de novo shoot organogenesis at allele level. Both direct and indirect shoot organogenesis showed a reduction in genome-wide DNA methylation. At gene level, non-expressed genes were hypermethylated in comparison with expressed genes. Among the genes exhibiting significant correlations between levels of DNA methylation and gene expression, the expression patterns of 75% of genes were negatively correlated with DNA methylation in the CG context, whereas the correlation patterns in the CHH context were the reverse. The allele-biased DNA methylation was consistent during shoot organogenesis, with fewer than one-thousandth of allele-specific methylation regions shifted. Analysis of allele-specific expression revealed that there were only 1909 genes showing phase-dependent allele-biased expression in the regeneration process, among which the allele pairs with greater differences in transcription factor binding sites at promoter regions exhibited greater differences in allele expression. Our results indicated a relatively independent transcriptional regulation in two subgenomes during shoot organogenesis, which was contributed by cis-acting genomic and epigenomic variations.

3.
CRISPR J ; 6(4): 339-349, 2023 08.
Article in English | MEDLINE | ID: mdl-37307061

ABSTRACT

The CRISPR-Cas9 system has been deployed for precision mutagenesis in an ever-growing number of species, including agricultural crops and forest trees. Its application to closely linked genes with extremely high sequence similarities has been less explored. In this study, we used CRISPR-Cas9 to mutagenize a tandem array of seven Nucleoredoxin1 (NRX1) genes spanning ∼100 kb in Populus tremula × Populus alba. We demonstrated efficient multiplex editing with one single guide RNA in 42 transgenic lines. The mutation profiles ranged from small insertions and deletions and local deletions in individual genes to large genomic dropouts and rearrangements spanning tandem genes. We also detected complex rearrangements including translocations and inversions resulting from multiple cleavage and repair events. Target capture sequencing was instrumental for unbiased assessments of repair outcomes to reconstruct unusual mutant alleles. The work highlights the power of CRISPR-Cas9 for multiplex editing of tandemly duplicated genes to generate diverse mutants with structural and copy number variations to aid future functional characterization.


Subject(s)
Gene Editing , Populus , Gene Editing/methods , CRISPR-Cas Systems/genetics , Populus/genetics , DNA Copy Number Variations , Mutagenesis , Translocation, Genetic/genetics
4.
Phytopathology ; 110(7): 1260-1269, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32202483

ABSTRACT

Colletotrichum gloeosporioides is a hemibiotrophic pathogen causing significant losses to economically important crops and forest trees, including Liriodendron. To explore the interaction between C. gloeosporioides and Liriodendron and to identify the candidate genes determining the pathogenesis, we sequenced and assembled the whole genome of C. gloeosporioides Lc1 (CgLc1) using PacBio and Illumina next generation sequencing and performed a comparative genomic analysis between CgLc1 and Cg01, the latter being a described endophytic species of the C. gloeosporioides complex. Gene structure prediction identified 15,744 protein-coding genes and 837 noncoding RNAs. Species-specific genes were characterized using an ortholog analysis followed by a pathway enrichment analysis, which showed that genes specific to CgLc1 were enriched for the arginine biosynthetic process. Furthermore, genome synteny analysis revealed that most of the protein-coding genes fell into collinear blocks. However, two clusters of polyketide synthase genes were identified to be specific for CgLc1, suggesting that they might have an important role in virulence control. Transcriptional regulators coexpressed with polyketide synthase genes were detected through a Weighted Correlation Network Analysis. Taken together, this work provides new insight into the virulence- and pathogenesis-associated genes present in C. gloeosporioides and its possible lifestyle.


Subject(s)
Colletotrichum , Liriodendron , Plant Diseases , Plant Leaves , Virulence
5.
Plant Physiol ; 183(1): 123-136, 2020 05.
Article in English | MEDLINE | ID: mdl-32139476

ABSTRACT

The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula × alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1 Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis.


Subject(s)
Lignin/metabolism , Plants, Genetically Modified/metabolism , Populus/metabolism , Xylem/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Catalysis , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Xylem/genetics
6.
Tree Physiol ; 38(3): 397-408, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28927239

ABSTRACT

Plant cell walls exhibit architectural and compositional changes throughout their development and in response to external cues. While tubulins are involved in cell wall biogenesis, much remains unknown about the scope of their involvement during the orchestration of this resource-demanding process. A transgenic approach coupled with cell wall compositional analysis, RNA-seq and mining of publicly available diurnal gene expression data was used to assess the involvement of tubulins in poplar leaf cell wall biogenesis. Leaf cell walls of transgenic poplar lines with constitutive overexpression of α-tubulin (TUA) exhibited an increased abundance of homogalacturonan, along with a reduction in xylose. These changes were traced to altered expression of UDP-glucuronic acid decarboxylase (GADC) in the transgenic leaves. A model is postulated by which altered diurnal control of TUA through its constitutive overexpression led to a metabolic tradeoff affecting cellular utilization of GADC substrate UDP-glucuronic acid. While there were no effects on cellulose, hemicellulose or lignin abundance, subtle effects on hemicellulose composition and associated gene expression were noted. In addition, expression and enzymatic activity of pectin methylesterase (PME) decreased in the transgenic leaves. The change is discussed in a context of increased levels of PME substrate homogalacturonan, slow stomatal kinetics and the fate of PME product methanol. Since stomatal opening and closing depend on fundamentally contrasting microtubule dynamics, the slowing of both processes in the transgenic lines as previously reported appears to be directly related to underlying cell wall compositional changes that were caused by tubulin manipulation.


Subject(s)
Circadian Rhythm/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Populus/physiology , Tubulin/genetics , Cell Wall/metabolism , Circadian Rhythm/genetics , Pectins/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/metabolism , Polysaccharides/metabolism , Populus/genetics , Tubulin/metabolism
7.
Front Plant Sci ; 7: 1493, 2016.
Article in English | MEDLINE | ID: mdl-27790223

ABSTRACT

Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and ß-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes.

8.
Sci Rep ; 6: 33655, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27641356

ABSTRACT

Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.


Subject(s)
Droughts , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Populus/physiology , Sucrose/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Organ Specificity , Plant Roots , Plant Shoots , Plants, Genetically Modified , RNA Interference , RNA, Small Interfering/genetics
9.
GM Crops Food ; 6(4): 206-15, 2015.
Article in English | MEDLINE | ID: mdl-26357840

ABSTRACT

The CRISPR/Cas9 technology is a welcome breakthrough for genome editing, owing to its precision, efficiency, versatility and ease of adoption. We recently reported the first application of CRISPR/Cas9 for biallelic mutations in stably transformed Populus, extending the species range of this powerful technology to woody perennials. An underappreciated obstacle in genome editing of outcrossing species is the frequent occurrence of sequence polymorphisms that can render CRISPR/Cas9 unproductive. We discuss experimental evidence as well as genome-wide computational analysis to demonstrate the sensitivity of CRISPR/Cas9 to allelic heterozygosity, and highlight tools and strategies that can help deal with such sequence polymorphisms. With its specificity, CRISPR/Cas9 offers a less equivocal means than previous approaches for discerning functional redundancy of paralogous genes that are prevalent in plant genomes. Continuing improvements of the CRISPR/Cas9 system for multiplex genome engineering should facilitate these efforts. The paradigm shift brought about by CRISPR/Cas9 promises to accelerate not only basic research but also applied crop improvement progress.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering/methods , Genome, Plant , Populus/genetics , Heterozygote , Plants, Genetically Modified , Polymorphism, Single Nucleotide
10.
J Exp Bot ; 66(20): 6507-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26246616

ABSTRACT

Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Populus/physiology , Protein Processing, Post-Translational , Tubulin/genetics , Cell Wall/physiology , Plant Proteins/metabolism , Plant Stomata/physiology , Populus/genetics , Tubulin/metabolism
13.
Front Plant Sci ; 5: 615, 2014.
Article in English | MEDLINE | ID: mdl-25429293

ABSTRACT

Sucrose transporters (SUTs) are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB), and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2) that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms.

14.
Tree Physiol ; 34(11): 1240-51, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24336515

ABSTRACT

The partitioning of carbon for growth, storage and constitutive chemical defenses is widely framed in terms of a hypothetical sink-source differential that varies with nutrient supply. According to this framework, phenolics accrual is passive and occurs in source leaves when normal sink growth is not sustainable due to a nutrient limitation. In assessing this framework, we present gene and metabolite evidence that condensed tannin (CT) accrual is strongest in sink leaves and sequesters carbon in a way that impinges upon foliar sink strength and upon phenolic glycoside (PG) accrual in Populus. The work was based on two Populus fremontii × angustifolia backcross lines with contrasting rates of CT accrual and growth, and equally large foliar PG reserves. However, foliar PG accrual was developmentally delayed in the high-CT, slow-growth line (SG), and nitrogen-limitation led to increased foliar PG accrual only in the low-CT, fast-growth line (FG). Metabolite profiling of developing leaves indicated comparatively carbon-limited amino acid metabolism, depletion of several Krebs cycle intermediates and reduced organ sink strength in SG. Gene profiling indicated that CT synthesis decreased as leaves expanded and PGs increased. A most striking finding was that the nitrogenous monoamine phenylethylamine accumulated only in leaves of SG plants. The potential negative impact of CT hyper-accumulation on foliar sink strength, as well as a mechanism for phenylethylamine involvement in CT polymerization in Populus are discussed. Starch accrual in source leaves and CT accrual in sink leaves of SG may both contribute to the maintenance of a slow-growth phenotype suited to survival in nutrient-poor habitats.


Subject(s)
Carbon/metabolism , Gene Expression Regulation, Plant , Populus/metabolism , Proanthocyanidins/metabolism , Carbon Sequestration , Chimera , Genotype , Glucosides/metabolism , Glycosides/metabolism , Metabolome , Nitrogen/metabolism , Oligonucleotide Array Sequence Analysis , Phenethylamines/metabolism , Phenols/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/immunology , Plant Leaves/metabolism , Polymerization , Populus/chemistry , Populus/growth & development , Populus/immunology , Propanols/metabolism
15.
Plant Cell ; 25(7): 2714-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23903318

ABSTRACT

Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.


Subject(s)
Photosynthesis , Populus/genetics , Populus/metabolism , Salicylic Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Hot Temperature , Lyases/genetics , Lyases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Populus/growth & development , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Transcriptome
16.
PLoS One ; 7(2): e31081, 2012.
Article in English | MEDLINE | ID: mdl-22363552

ABSTRACT

BACKGROUND: The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. PRINCIPAL FINDINGS: Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. CONCLUSIONS: These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks/genetics , Genome, Plant/genetics , Oryza/growth & development , Oryza/genetics , Seeds/growth & development , Seeds/genetics , Abscisic Acid/biosynthesis , Adaptation, Physiological/genetics , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Plant/genetics , Gibberellins/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/growth & development , Signal Transduction/genetics , Transcription Factors/metabolism
17.
Plant Physiol ; 156(3): 1397-409, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546455

ABSTRACT

Abscisic acid (ABA) regulates plant development and is crucial for plant responses to biotic and abiotic stresses. Studies have identified the key components of ABA signaling in Arabidopsis (Arabidopsis thaliana), some of which regulate ABA responses by the transcriptional regulation of downstream genes. Here, we report the functional identification of rice (Oryza sativa) ABI5-Like1 (ABL1), which is a basic region/leucine zipper motif transcription factor. ABL1 is expressed in various tissues and is induced by the hormones ABA and indole-3-acetic acid and stress conditions including salinity, drought, and osmotic pressure. The ABL1 deficiency mutant, abl1, shows suppressed ABA responses, and ABL1 expression in the Arabidopsis abi5 mutant rescued the ABA sensitivity. The ABL1 protein is localized to the nucleus and can directly bind ABA-responsive elements (ABREs; G-box) in vitro. A gene expression analysis by DNA chip hybridization confirms that a large proportion of down-regulated genes of abl1 are involved in stress responses, consistent with the transcriptional activating effects of ABL1. Further studies indicate that ABL1 regulates the plant stress responses by regulating a series of ABRE-containing WRKY family genes. In addition, the abl1 mutant is hypersensitive to exogenous indole-3-acetic acid, and some ABRE-containing genes related to auxin metabolism or signaling are altered under ABL1 deficiency, suggesting that ABL1 modulates ABA and auxin responses by directly regulating the ABRE-containing genes.


Subject(s)
Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Genes, Plant/genetics , Indoleacetic Acids/metabolism , Oryza/genetics , Plant Proteins/metabolism , Response Elements/genetics , Abscisic Acid/pharmacology , Base Sequence , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Models, Biological , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Oryza/drug effects , Plant Proteins/genetics , Protein Binding/drug effects , Protein Transport/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics
18.
Mol Plant ; 2(4): 755-772, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19825654

ABSTRACT

Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development; however, the mechanism of how they synergistically function is still largely unknown. To explore the underlying mechanisms in photomorphogenesis, genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in the presence of light stimuli or exogenous Brassinolide (BL). Results showed that BR deficiency stimulates, while BL treatment suppresses, the expressions of light-responsive genes and photomorphogenesis, confirming the negative effects of BR in photomorphogenesis. This is consistent with the specific effects of BR on the expression of genes involved in cell wall modification, cellular metabolism and energy utilization during dark-light transition. Further analysis revealed that hormone biosynthesis and signaling-related genes, especially those of auxin, were altered under BL treatment or light stimuli, indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones. Additionally, suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light, hormone, and protein degradation. The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway, which will help to elucidate the molecular mechanism of plant photomorphogenesis.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/metabolism , Cholestanols/metabolism , Cholestanols/pharmacology , Genome, Plant/genetics , Light , Morphogenesis , Steroids, Heterocyclic/metabolism , Steroids, Heterocyclic/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Brassinosteroids , Chromatin Immunoprecipitation , Cluster Analysis , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Genome-Wide Association Study , Morphogenesis/drug effects , Morphogenesis/radiation effects , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/radiation effects , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/radiation effects
19.
Mol Plant ; 2(5): 1107-22, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19825684

ABSTRACT

In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed primarily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.


Subject(s)
Arabidopsis/genetics , Brassica napus/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/physiology , Lipid Metabolism/physiology , Seeds/genetics , DNA, Complementary , Expressed Sequence Tags , Fatty Acids/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant/genetics , Lipid Metabolism/genetics , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction
20.
Nucleic Acids Res ; 37(3): 916-30, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19103661

ABSTRACT

Small RNAs (sRNAs) are common and effective modulators of gene expression in eukaryotic organisms. To characterize the sRNAs expressed during rice seed development, massively parallel signature sequencing (MPSS) was performed, resulting in the obtainment of 797,399 22-nt sequence signatures, of which 111,161 are distinct ones. Analysis on the distributions of sRNAs on chromosomes showed that most sRNAs originate from interspersed repeats that mainly consist of transposable elements, suggesting the major function of sRNAs in rice seeds is transposon silencing. Through integrative analysis, 26 novel miRNAs and 12 miRNA candidates were identified. Further analysis on the expression profiles of the known and novel miRNAs through hybridizing the generated chips revealed that most miRNAs were expressed preferentially in one or two rice tissues. Detailed comparison of the expression patterns of miRNAs and corresponding target genes revealed the negative correlation between them, while few of them are positively correlated. In addition, differential accumulations of miRNAs and corresponding miRNA*s suggest the functions of miRNA*s other than being passenger strands of mature miRNAs, and in regulating the miRNA functions.


Subject(s)
MicroRNAs/metabolism , Oryza/genetics , Seeds/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , MicroRNAs/chemistry , Oryza/embryology , Oryza/metabolism , RNA, Untranslated/classification , Retroelements , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...