Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730922

ABSTRACT

Hybrid bonded-bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes damage to the adhesive layer and composite laminate around the holes, leading to issues with interface damage. In this study, we employed experimental and finite element methods. Initially, different interference-fit sizes were selected for bolt insertion to analyze the damage mechanism of the adhesive layer during interference-fit bolt installation. Subsequently, a finite element tensile model considering damage to the adhesive layer and composite laminate around the holes post-insertion was established. This study aimed to investigate damage in composite bonded-bolted hybrid joints, explore load-carrying rules and failure modes, and reveal the mechanisms of interference effects on structural damage and failure. The research results indicate that the finite element prediction model considering initial damage around the holes is more effective. As the interference-fit size increases, damage to the adhesive layer transitions from surface debonding to local cracking, while damage to the composite matrix shifts from slight compression failure to severe delamination and fiber-bending fracturing. The structural strength shows a trend of initially increasing and then decreasing, with the maximum strength observed at an interference-fit size of 1.1%.

2.
Environ Monit Assess ; 195(7): 871, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349560

ABSTRACT

Water transfer is an effective way to solve the unequal distribution of water resources to meet the needs of urban residents and industry. Annual wet weight data indicated that there may be algal blooms during water transfer. We explored the ecological risk of water transfer from Xiashan to the Jihongtan reservoir through algae growth potential (AGP) tests. The results showed that the Jihongtan reservoir had certain self-regulation abilities. When the total dissolved phosphorus (TDP) concentration was not more than 0.04 mg/L, the risk of algal bloom was low. When the N/P ratio (by mass) was less than 40, the ecological imbalance of algal growth may be caused. When the N/P ratio was 20, it was the best environment for algal growth. Under the current nutrient condition of the Jihongtan reservoir, the volume of ecological safety threshold in water transfer was 60% of the Jihongtan reservoir's capacity. If the nutrient level was further increased, the water transfer threshold would rise to 75%. In addition, water transfer may cause the homogenization of water quality and accelerate the eutrophication process of reservoirs. Regarding risk assessment, we believe that controlling nitrogen and phosphorus are more consistent with the natural evolution of reservoirs than controlling phosphorus alone for solving the problem of eutrophication.


Subject(s)
Environmental Monitoring , Eutrophication , Water Quality , Phosphorus/analysis , Nitrogen/analysis , China
3.
Mar Pollut Bull ; 189: 114823, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36931154

ABSTRACT

Mutual transformations of rhizospheric arsenic (As) in pollution-prone mangrove sediments affected by root exudate oxalate were simulated. This study focuses on the effect of oxalate on As release, mobilization, and phase speciation associated with P and Fe was examined under anoxic conditions in time-dependent changes. Results showed that oxalate addition significantly facilitated As-Fe-P release from As-contaminated mangrove sediments. Sediment As formed the adsorptive and the carbonate-binding fractionations, facilitating the re-adsorption processes. Solution As and As5+ correlated with NaOH-P positively but with NaHCO3-P and HCl-P negatively. Dominant Fe3+ (>84 %) from the amorphous Fe regulated suspension changes and then time-dependent co-precipitation with As and P. Sediment P formed strong complexes with Fe oxides and could be substituted for As via STEM analysis. Oxalate ligand exchange, competitive adsorption of oxalate, and Fe-reduced dissolution are confirmed to involve, allowing for an insight As/P/Fe mobilization and fate in mangrove wetland.


Subject(s)
Arsenic , Iron , Iron/chemistry , Arsenic/analysis , Oxalates/chemistry , Phosphates , Environmental Pollution , Geologic Sediments/chemistry
4.
Environ Pollut ; 322: 121177, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36731741

ABSTRACT

Ambient fine particulate matter (PM2.5) pollution is the principal environmental risk factor for health burdens in China. Identifying the sectoral contributions of pollutant emissions sources on multiple spatiotemporal scales can help in the formulation of specific strategies. In this study, we used sensitivity analysis to explore the specific contributions of seven major emission sources to ambient PM2.5 and attributable premature mortality across mainland China. In 2016, about 60% of China's population lived in areas with PM2.5 concentrations above the Chinese Ambient Air Quality Standard of 35 µg/m3. This percentage was expected to decrease to 35% and 39% if industrial and residential emissions were fully eliminated. In densely populated and highly polluted regions, residential sources contributed about 50% of the PM2.5 exposure in winter, while industrial sources contributed the most (29-51%) in the remaining seasons. The three major sectoral contributors to PM2.5-related deaths were industry (247,000 cases, 35%), residential sources (219,000 cases, 31%), and natural sources (87,000, 12%). The relative contributions of the different sectors varied in the different provinces, with industrial sources making the largest contribution in Shanghai (65%), while residential sources predominated in Heilongjiang (63%), and natural sources dominated in Xinjiang (82%). The contributions of the agricultural (11%), transportation (6%), and power (3%) sources were relatively low in China, but emissions mitigation was still effective in densely populated areas. In conclusion, to effectively alleviate health burdens across China, priority should be given to controlling residential emissions in winter and industrial emissions all year round, taking additional measures to curb emissions from other sources in urban hotspots, and formulating air pollution control strategies tailored to local conditions.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Environmental Monitoring , China/epidemiology , Air Pollution/analysis , Particulate Matter/analysis
5.
Mar Pollut Bull ; 151: 110800, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056595

ABSTRACT

Few investigations of iron speciation exist in intertidal conditions with little attention given to understanding the geochemical behavior of Fe3+-Fe2+ and its biogeochemical processes. Here, one sediment core was collected in Yunxiao mangrove forests, Zhangjiang estuary, China and iron mineralogy was determined by magnetic methods and Mössbauer spectroscopy. Changes in magnetic susceptibility, susceptibility of anhysteretic remanent magnetization, and saturation isothermal remanent magnetization were linked to changes of pseudo-single domain soft coercive components with minor antiferromagnetic fractions and the presence of minimal concentrations of superparamagnetic particles was confirmed by the no frequency dependent of AC magnetization. A positive correlation between L-ratio and hard isothermal remanent magnetization is congruent with the distribution of high-coercivity antiferromagnetic minerals. At 295 K, the Mössbauer spectrum of specimens was well fitted with a single magnetic sextet, hematite and two magnetic doublets, paramagnetic Fe2+ and paramagnetic Fe3+. The usefulness of magnetic data and Mössbauer spectroscopy could offer valuable analytical tools for tracking changes of iron speciation and phase in the intertidal conditions.


Subject(s)
Environmental Monitoring , Estuaries , Iron , Wetlands , China , Minerals
6.
Huan Jing Ke Xue ; 33(10): 3417-25, 2012 Oct.
Article in Chinese | MEDLINE | ID: mdl-23233968

ABSTRACT

In order to better understand the hydrological process in Xilin River Basin, 248 water samples were collected in 13 sections (10 were at the mainstream and 3 were at the three tributaries) over the Xilin River during 2006-2008 and thereafter analyzed by high resolution inductively coupled plasma mass spectrometry (ICP-MS) for 20 trace elements. The temporal and spatial distribution characteristics of trace elements were obtained. The results showed that the average concentration values of trace elements were 0. 1-10 microg x L(-1). Most of those values were at the concentration ranges of precipitation and groundwater and very close to the values of groundwater, indicating that the surface water was recharged by precipitation and groundwater especially by groundwater. The variation of concentration of trace elements in surface water was not strong at the temporal scale. Usually, the concentration values of trace elements were higher in April and May than those in July and August while those values were a bit lower in 2007 than in 2006 and 2008. Most of the trace element concentrations showed a upward trend from upstream to downstream. The enrichment of trace elements was contributed to the recharge of tributaries and groundwater, the evaporation of the stream water.


Subject(s)
Fresh Water/chemistry , Rivers/chemistry , Trace Elements/analysis , China , Environmental Monitoring , Groundwater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...