Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 258, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37189053

ABSTRACT

BACKGROUND: Magnesium chelatase plays an important role in photosynthesis, but only a few subunits have been functionally characterized in cassava. RESULTS: Herein, MeChlD was successfully cloned and characterized. MeChlD encodes a magnesium chelatase subunit D, which has ATPase and vWA conservative domains. MeChlD was highly expressed in the leaves. Subcellular localization suggested that MeChlD:GFP was a chloroplast-localized protein. Furthermore, the yeast two-hybrid system and BiFC analysis indicated that MeChlD interacts with MeChlM and MePrxQ, respectively. VIGS-induce silencing of MeChlD resulted in significantly decreased chlorophyll content and reduction the expression of photosynthesis-related nuclear genes. Furthermore, the storage root numbers, fresh weight and the total starch content in cassava storage roots of VIGS-MeChlD plants was significantly reduced. CONCLUSION: Taken together, MeChlD located at the chloroplast is not only required for chlorophyll biosynthesis and photosynthesis, but also affecting the starch accumulation in cassava. This study expands our understanding of the biological functions of ChlD proteins.


Subject(s)
Manihot , Starch , Starch/metabolism , Manihot/genetics , Manihot/metabolism , Photosynthesis , Chlorophyll/metabolism
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108399

ABSTRACT

As a starchy and edible tropical plant, cassava (Manihot esculenta Crantz) has been widely used as an industrial raw material and a dietary source. However, the metabolomic and genetic differences in specific germplasms of cassava storage root were unclear. In this study, two specific germplasms, M. esculenta Crantz cv. sugar cassava GPMS0991L and M. esculenta Crantz cv. pink cassava BRA117315, were used as research materials. Results showed that sugar cassava GPMS0991L was rich in glucose and fructose, whereas pink cassava BRA117315 was rich in starch and sucrose. Metabolomic and transcriptomic analysis indicated that sucrose and starch metabolism had significantly changing metabolites enrichment and the highest degree of differential expression genes, respectively. Sugar transport in storage roots may contribute to the activities of sugar, which will eventually be exported to transporters (SWEETs), such as (MeSWEET1a, MeSWEET2b, MeSWEET4, MeSWEET5, MeSWEET10b, and MeSWEET17c), which transport hexose to plant cells. The expression level of genes involved in starch biosynthesis and metabolism were altered, which may result in starch accumulation. These results provide a theoretical basis for sugar transport and starch accumulation and may be useful in improving the quality of tuberous crops and increasing yield.


Subject(s)
Manihot , Starch , Starch/metabolism , Manihot/genetics , Manihot/metabolism , Transcriptome , Plant Roots/genetics , Plant Roots/metabolism , Glucose/metabolism , Sucrose/metabolism
3.
BMC Plant Biol ; 23(1): 227, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118665

ABSTRACT

BACKGROUND: Cassava (Manihot esculenta Crantz) is widely planted in tropical and several subtropical regions in which drought, high temperatures, and other abiotic stresses occur. Metallothionein (MT) is a group of conjugated proteins with small molecular weight and rich in cysteine. These proteins play a substantial role in response to physiological stress through the regulation of reactive oxygen species (ROS). However, the biological functions of MT genes in cassava are unknown. RESULTS: A total of 10 MeMT genes were identified in the cassava genome. The MeMTs were divided into 3 groups (Types 2-4) based on the contents and distribution of Cys residues. The MeMTs exhibited tissue-specific expression and located on 7 chromosomes. The MeMT promoters contain some hormones regulatory and stresses responsiveness elements. MeMTs were upregulated under hydrogen peroxide (H2O2) treatment and in respond to post-harvest physiological deterioration (PPD). The results were consistent with defense-responsive cis-acting elements in the MeMT promoters. Further, four of MeMTs were selected and silenced by using the virus-induced gene silencing (VIGS) method to evaluate their functional characterization. The results of gene-silenced cassava suggest that MeMTs are involved in oxidative stress resistance, as ROS scavengers. CONCLUSION: We identified the 10 MeMT genes, and explore their evolutionary relationship, conserved motif, and tissue-specific expression. The expression profiles of MeMTs under three kinds of abiotic stresses (wounding, low-temperature, and H2O2) and during PPD were analyzed. The tissue-specific expression and the response to abiotic stresses revealed the role of MT in plant growth and development. Furthermore, silenced expression of MeMTs in cassava leaves decreased its tolerance to ROS, consistent with its predicted role as ROS scavengers. In summary, our results suggest an important role of MeMTs in response to physiological stress as well as species adaptation via the regulation of ROS homeostasis.


Subject(s)
Manihot , Reactive Oxygen Species/metabolism , Manihot/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Droughts , Phylogeny
4.
Food Chem X ; 16: 100490, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36339321

ABSTRACT

This study aimed to synthesize packaging films using bioactive ingredients. The composite film was prepared by blending octenyl succinate cassava starch ester (OSCS) with chitosan (CS) nano-ZnO and then adding ε-polylysine (ε-PL). The study also explored the effect of different concentrations of ε-PL on OSCS/CS/ZnO films. Fourier infrared spectroscopyand fluorescence microscopy revealed that the composite film was formed by both hydrogen bonding and a Schiff base reaction. The diffraction peaks of the original materials in X-ray diffraction disappeared after film formation, indicating good miscibility between the materials. Scanning electron microscope showed that the density of its structure increased with increasing the ε-PL content. The thermogravimetric analysis showed that the addition of ε-PL improved the thermal stability of the composite film to some extent. When used in cherry preservation, the bio-based modified starch film effectively reduced cherry decay, stem dryness, and weight loss, maintained surface color, and increased the soluble solid content.

SELECTION OF CITATIONS
SEARCH DETAIL
...