Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36577448

ABSTRACT

With the improvement of single-cell measurement techniques, there is a growing awareness that individual differences exist among cells, and protein expression distribution can vary across cells in the same tissue or cell line. Pinpointing the protein subcellular locations in single cells is crucial for mapping functional specificity of proteins and studying related diseases. Currently, research about single-cell protein location is still in its infancy, and most studies and databases do not annotate proteins at the cell level. For example, in the human protein atlas database, an immunofluorescence image stained for a particular protein shows multiple cells, but the subcellular location annotation is for the whole image, ignoring intercellular difference. In this study, we used large-scale immunofluorescence images and image-level subcellular locations to develop a deep-learning-based pipeline that could accurately recognize protein localizations in single cells. The pipeline consisted of two deep learning models, i.e. an image-based model and a cell-based model. The former used a multi-instance learning framework to comprehensively model protein distribution in multiple cells in each image, and could give both image-level and cell-level predictions. The latter firstly used clustering and heuristics algorithms to assign pseudo-labels of subcellular locations to the segmented cell images, and then used the pseudo-labels to train a classification model. Finally, the image-based model was fused with the cell-based model at the decision level to obtain the final ensemble model for single-cell prediction. Our experimental results showed that the ensemble model could achieve higher accuracy and robustness on independent test sets than state-of-the-art methods.


Subject(s)
Deep Learning , Humans , Proteins/metabolism , Algorithms , Cell Line , Fluorescent Antibody Technique
2.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35018423

ABSTRACT

Location proteomics seeks to provide automated high-resolution descriptions of protein location patterns within cells. Many efforts have been undertaken in location proteomics over the past decades, thereby producing plenty of automated predictors for protein subcellular localization. However, most of these predictors are trained solely from high-throughput microscopic images or protein amino acid sequences alone. Unifying heterogeneous protein data sources has yet to be exploited. In this paper, we present a pipeline called sequence, image, network-based protein subcellular locator (SIN-Locator) that constructs a multi-view description of proteins by integrating multiple data types including images of protein expression in cells or tissues, amino acid sequences and protein-protein interaction networks, to classify the patterns of protein subcellular locations. Proteins were encoded by both handcrafted features and deep learning features, and multiple combining methods were implemented. Our experimental results indicated that optimal integrations can considerately enhance the classification accuracy, and the utility of SIN-Locator has been demonstrated through applying to new released proteins in the human protein atlas. Furthermore, we also investigate the contribution of different data sources and influence of partial absence of data. This work is anticipated to provide clues for reconciliation and combination of multi-source data for protein location analysis.


Subject(s)
Proteins , Proteomics , Amino Acid Sequence , Diagnostic Imaging , Humans , Proteins/chemistry , Proteomics/methods
3.
Bioinformatics ; 38(3): 827-833, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34694372

ABSTRACT

MOTIVATION: Knowledge of subcellular locations of proteins is of great significance for understanding their functions. The multi-label proteins that simultaneously reside in or move between more than one subcellular structure usually involve with complex cellular processes. Currently, the subcellular location annotations of proteins in most studies and databases are descriptive terms, which fail to capture the protein amount or fractions across different locations. This highly limits the understanding of complex spatial distribution and functional mechanism of multi-label proteins. Thus, quantitatively analyzing the multiplex location patterns of proteins is an urgent and challenging task. RESULTS: In this study, we developed a deep-learning-based pattern unmixing pipeline for protein subcellular localization (DULoc) to quantitatively estimate the fractions of proteins localizing in different subcellular compartments from immunofluorescence images. This model used a deep convolutional neural network to construct feature representations, and combined multiple nonlinear decomposing algorithms as the pattern unmixing method. Our experimental results showed that the DULoc can achieve over 0.93 correlation between estimated and true fractions on both real and synthetic datasets. In addition, we applied the DULoc method on the images in the human protein atlas database on a large scale, and showed that 70.52% of proteins can achieve consistent location orders with the database annotations. AVAILABILITY AND IMPLEMENTATION: The datasets and code are available at: https://github.com/PRBioimages/DULoc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Deep Learning , Humans , Algorithms , Proteins/chemistry , Neural Networks, Computer , Fluorescent Antibody Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...