Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 478, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769534

ABSTRACT

BACKGROUND: Miscarriage is a frustrating complication of pregnancy that is common among women of reproductive age. Insufficient decidualization which not only impairs embryo implantation but disturbs fetomaternal immune-tolerance, has been widely regarded as a major cause of miscarriage; however, the underlying mechanisms resulting in decidual impairment are largely unknown. METHODS: With informed consent, decidual tissue from patients with spontaneous abortion or normal pregnant women was collected to detect the expression profile of UCHL1. Human endometrial stromal cells (HESCs) were used to explore the roles of UCHL1 in decidualization and dNK modulation, as well as the mechanisms involved. C57/BL6 female mice (7-10 weeks old) were used to construct pregnancy model or artificially induced decidualization model to evaluate the effect of UCHL1 on mice decidualization and pregnancy outcome. RESULTS: The Ubiquitin C-terminal hydrolase L1 (UCHL1), as a deubiquitinating enzyme, was significantly downregulated in decidua from patients with miscarriage, along with impaired decidualization and decreased dNKs. Blockage of UCHL1 led to insufficient decidualization and resultant decreased expression of cytokines CXCL12, IL-15, TGF-ß which were critical for generation of decidual NK cells (dNKs), whereas UCHL1 overexpression enhanced decidualization accompanied by increase in dNKs. Mechanistically, the promotion of UCHL1 on decidualization was dependent on its deubiquitinating activity, and intervention of UCHL1 inhibited the activation of JAK2/STAT3 signaling pathway, resulting in aberrant decidualization and decreased production of cytokines associated with dNKs modulation. Furthermore, we found that inhibition of UCHL1 also disrupted the decidualization in mice and eventually caused adverse pregnancy outcome. CONCLUSIONS: UCHL1 plays significant roles in decidualization and dNKs modulation during pregnancy in both humans and mice. Its deficiency indicates a poor pregnancy outcome due to defective decidualization, making UCHL1 a potential target for the diagnosis and treatment of miscarriage.


Subject(s)
Abortion, Spontaneous , Decidua , Killer Cells, Natural , Mice, Inbred C57BL , Ubiquitin Thiolesterase , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/deficiency , Female , Decidua/metabolism , Animals , Pregnancy , Abortion, Spontaneous/metabolism , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Adult , Mice , Stromal Cells/metabolism , Signal Transduction
3.
Protein Cell ; 14(6): 416-432, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37285261

ABSTRACT

Approximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ε4 allele copies were converted to the AD-neutral ε3 allele in human ε4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.


Subject(s)
Apolipoprotein E4 , Cytosine , Humans , Apolipoprotein E4/genetics , Mutation , Blastocyst , Heterozygote , Gene Editing , CRISPR-Cas Systems
4.
Nat Commun ; 14(1): 2046, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041195

ABSTRACT

The type V-F CRISPR-Cas12f system is a strong candidate for therapeutic applications due to the compact size of the Cas12f proteins. In this work, we identify six uncharacterized Cas12f1 proteins with nuclease activity in mammalian cells from assembled bacterial genomes. Among them, OsCas12f1 (433 aa) from Oscillibacter sp. and RhCas12f1 (415 aa) from Ruminiclostridium herbifermentans, which respectively target 5' T-rich Protospacer Adjacent Motifs (PAMs) and 5' C-rich PAMs, show the highest editing activity. Through protein and sgRNA engineering, we generate enhanced OsCas12f1 (enOsCas12f1) and enRhCas12f1 variants, with 5'-TTN and 5'-CCD (D = not C) PAMs respectively, exhibiting much higher editing efficiency and broader PAMs, compared with the engineered variant Un1Cas12f1 (Un1Cas12f1_ge4.1). Furthermore, by fusing the destabilized domain with enOsCas12f1, we generate inducible-enOsCas12f1 and demonstate its activity in vivo by single adeno-associated virus delivery. Finally, dead enOsCas12f1-based epigenetic editing and gene activation can also be achieved in mammalian cells. This study thus provides compact gene editing tools for basic research with remarkable promise for therapeutic applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genome, Bacterial , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Associated Protein 9/metabolism , Dependovirus/genetics , Gene Editing/methods , Mammals/genetics , Genome, Bacterial/physiology
5.
Nat Biotechnol ; 41(1): 108-119, 2023 01.
Article in English | MEDLINE | ID: mdl-35953673

ABSTRACT

CRISPR-Cas13 systems have recently been used for targeted RNA degradation in various organisms. However, collateral degradation of bystander RNAs has limited their in vivo applications. Here, we design a dual-fluorescence reporter system for detecting collateral effects and screening Cas13 variants in mammalian cells. Among over 200 engineered variants, several Cas13 variants including Cas13d and Cas13X exhibit efficient on-target activity but markedly reduced collateral activity. Furthermore, transcriptome-wide off-targets and cell growth arrest induced by Cas13 are absent for these variants. High-fidelity Cas13 variants show similar RNA knockdown activity to wild-type Cas13 but no detectable collateral damage in transgenic mice or adeno-associated-virus-mediated somatic cell targeting. Thus, high-fidelity Cas13 variants with minimal collateral effects are now available for targeted degradation of RNAs in basic research and therapeutic applications.


Subject(s)
CRISPR-Cas Systems , RNA , Animals , Mice , CRISPR-Cas Systems/genetics , RNA/genetics , RNA Stability/genetics , Mice, Transgenic , Transcriptome , Mammals/genetics
6.
Cell Mol Immunol ; 18(6): 1476-1488, 2021 06.
Article in English | MEDLINE | ID: mdl-31900460

ABSTRACT

Macroautophagy has been implicated in modulating the therapeutic function of mesenchymal stromal cells (MSCs). However, the biological function of chaperone-mediated autophagy (CMA) in MSCs remains elusive. Here, we found that CMA was inhibited in MSCs in response to the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). In addition, suppression of CMA by knocking down the CMA-related lysosomal receptor lysosomal-associated membrane protein 2 (LAMP-2A) in MSCs significantly enhanced the immunosuppressive effect of MSCs on T cell proliferation, and as expected, LAMP-2A overexpression in MSCs exerted the opposite effect on T cell proliferation. This effect of CMA on the immunosuppressive function of MSCs was attributed to its negative regulation of the expression of chemokine C-X-C motif ligand 10 (CXCL10), which recruits inflammatory cells, especially T cells, to MSCs, and inducible nitric oxide synthase (iNOS), which leads to the subsequent inhibition of T cell proliferation via nitric oxide (NO). Mechanistically, CMA inhibition dramatically promoted IFN-γ plus TNF-α-induced activation of NF-κB and STAT1, leading to the enhanced expression of CXCL10 and iNOS in MSCs. Furthermore, we found that IFN-γ plus TNF-α-induced AKT activation contributed to CMA inhibition in MSCs. More interestingly, CMA-deficient MSCs exhibited improved therapeutic efficacy in inflammatory liver injury. Taken together, our findings established CMA inhibition as a critical contributor to the immunosuppressive function of MSCs induced by inflammatory cytokines and highlighted a previously unknown function of CMA.


Subject(s)
Chaperone-Mediated Autophagy , Immunosuppression Therapy , Inflammation/immunology , Inflammation/pathology , Mesenchymal Stem Cells/immunology , Animals , Chaperone-Mediated Autophagy/drug effects , Chemokine CXCL10/metabolism , Enzyme Activation/drug effects , Interferon-gamma/pharmacology , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT1 Transcription Factor/metabolism , Spleen/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/pharmacology
7.
Theranostics ; 10(13): 6048-6060, 2020.
Article in English | MEDLINE | ID: mdl-32483437

ABSTRACT

Rationale: Resistance to pemetrexed (PEM)-based chemotherapy is a major cause of progression in non-small cell lung cancer (NSCLC) patients. The deubiquitinating enzyme UCHL1 was recently found to play important roles in chemoresistance and tumor progression. However, the potential roles and mechanisms of UCHL1 in PEM resistance remain unclear. Methods: Bioinformatics analyses and immunohistochemistry were used to evaluate UCHL1 expression in NSCLC specimens. Kaplan-Meier analysis with the log-rank test was used for survival analyses. We established PEM-resistant NSCLC cell lines by exposing them to step-wise increases in PEM concentrations, and in vitro and in vivo assays were used to explore the roles and mechanisms of UCHL1 in PEM resistance using the NSCLC cells. Results: In chemoresistant tumors from NSCLC patients, UCHL1 was highly expressed and elevated UCHL1 expression was strongly associated with poor outcomes. Furthermore, UCHL1 expression was significantly upregulated in PEM-resistant NSCLC cells, while genetic silencing or inhibiting UCHL1 suppressed resistance to PEM and other drugs in NSCLC cells. Mechanistically, UCHL1 promoted PEM resistance in NSCLC by upregulating the expression of thymidylate synthase (TS), based on reduced TS expression after UCHL1 inhibition and re-emergence of PEM resistance upon TS restoration. Furthermore, UCHL1 upregulated TS expression, which mitigated PEM-induced DNA damage and cell cycle arrest in NSCLC cells, and also conferred resistance to PEM and other drugs. Conclusions: It appears that UCHL1 promotes PEM resistance by upregulating TS in NSCLC cells, which mitigated DNA damage and cell cycle arrest. Thus, UCHL1 may be a therapeutic target for overcoming PEM resistance in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Deubiquitinating Enzymes/metabolism , Lung Neoplasms/metabolism , Thymidylate Synthase/metabolism , Ubiquitin Thiolesterase/metabolism , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/physiology , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/physiology , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Immunohistochemistry/methods , Lung Neoplasms/drug therapy , Male , Mice, Inbred BALB C , Middle Aged , Pemetrexed/pharmacology , Up-Regulation/drug effects , Up-Regulation/physiology
9.
EBioMedicine ; 39: 540-551, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30578080

ABSTRACT

BACKGROUND: Intake of ω-3 PUFAs have been demonstrated to have positive effects on pregnancy outcome, whose receptor, GPR120, regulates several cellular functions including differentiation, metabolism and immune reaction. However, whether GPR120 is involved in decidualization and pregnancy remains unknown. METHODS: Decidua tissue from women with normal pregnancy and spontaneous abortion were collected to determine the expression profile of GPR120. Abortion mouse models and artificially induced deciduoma in mice were established to evaluate the effect of GPR120 on pregnancy outcome and in vivo decidualization. HESCs and primary DSCs were used to explore the roles of GPR120 in decidualization and mechanisms involved. FINDINGS: We found that GPR120 functioned to promote decidualization by upregulating glucose uptake and pentose-phosphate pathway (PPP) of human endometrial stromal cells. Firstly, the expression of GPR120 in decidua of spontaneous abortion was downregulated compared to normal decidua. Lack of GPR120 predisposed mice to LPS or RU486 induced abortion. Decidualization was augmented by GPR120 via improving GLUT1-mediated glucose uptake and G6PD- mediated PPP. FOXO1 was upregulated by GPR120 via activation of ERK1/2 and AMPK signaling and increased the expression of GLUT1. Furthermore, the expression of chemokines and cytokines in decidual stromal cells was enhanced by GPR120. Lastly, GPR120 agonist ameliorated LPS-induced abortion in the mice. INTERPRETATION: GPR120 plays significant roles in decidualization and the maintenance of pregnancy, which might be a potential target for diagnosis and treatment of spontaneous abortion. FUND: Ministry of Science and Technology of China, National Natural Science Foundation of China, the Program of Science and Technology Commission of Shanghai Municipality.


Subject(s)
Abortion, Spontaneous/metabolism , Decidua/metabolism , Glucose/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Abortion, Spontaneous/chemically induced , Abortion, Spontaneous/genetics , Adult , Animals , Cell Line , Disease Models, Animal , Down-Regulation , Fatty Acids, Omega-3 , Female , Humans , Lipopolysaccharides/adverse effects , Mice , Mifepristone/adverse effects , Pentose Phosphate Pathway , Pregnancy , Stromal Cells/cytology , Stromal Cells/metabolism
10.
J Exp Clin Cancer Res ; 37(1): 258, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30359286

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common pediatric solid tumor that originates from neural crest-derived sympathoadrenal precursor cells that are committed to development of sympathetic nervous system. The well differentiated histological phenotype of NB tumor cells has been reportedly associated with favorable patient outcome. Retinoic acid (RA) can effectively induce NB cell differentiation, thereby being used in the clinic as a treatment agent for inducing the differentiation of high-risk NB. However, the underlying molecular mechanisms of regulating differentiation remain elusive. METHODS: The correlation between clinical characteristics, survival and the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) expression were assessed using a neuroblastic tumor tissue microarray, and then validated in three independent patient datasets. The different expression of UCHL1 in ganglioneuroblastoma, ganglioneuroma and NB was detected by immunohistochemistry, mass spectra and immunoblotting analysis, and the correlation between UCHL1 expression and the differentiated histology was analyzed, which was also validated in three independent patient datasets. Furthermore, the roles of UCHL1 in NB cell differentiation and proliferation and the underlying mechanisms were studied by using short hairpin RNA and its inhibitor LDN57444 in vitro. RESULTS: Based on our neuroblastic tumor tissue microarrays and three independent validation datasets (Oberthuer, Versteeg and Seeger), we identified that UCHL1 served as a prognostic marker for better clinical outcome in NB. We further demonstrated that high UCHL1 expression was associated with NB differentiation, indicated by higher UCHL1 expression in ganglioneuroblastomas/ganglioneuromas and well-differentiated NB than poorly differentiated NB, and the positive correlation between UCHL1 and differentiation markers. As expected, inhibiting UCHL1 by knockdown or LDN57444 could significantly inhibit RA-induced neural differentiation of NB tumor cells, characterized by decreased neurite outgrowth and neural differentiation markers. This effect of UCHL1 was associated with positively regulating RA-induced AKT and ERK1/2 signaling activation. What's more, knockdown of UCHL1 conferred resistance to RA-induced growth arrest. CONCLUSION: Our findings identify a pivotal role of UCHL1 in NB cell differentiation and as a prognostic marker for survival in patients with NB, potentially providing a novel therapeutic target for NB.


Subject(s)
Biomarkers, Tumor/metabolism , Neuroblastoma/metabolism , Neurons/cytology , Ubiquitin Thiolesterase/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Child , Ganglioneuroblastoma/metabolism , Ganglioneuroma/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neurons/metabolism , Prognosis , Survival Analysis , Tissue Array Analysis , Up-Regulation
11.
Cell Death Dis ; 9(5): 459, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29686406

ABSTRACT

It is known that proinflammatory cytokines empower multipotent mesenchymal stromal cells (MSCs) the immunosuppressive capacity to treat various inflammatory diseases. Nevertheless, how the proinflammatory cytokines modulate the immunosuppressive capacity of MSCs is poorly understood. In the present study, we identified that the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) was upregulated in MSCs upon stimulation of proinflammatory cytokines IFN-γ plus TNF-α. Interestingly, through intervening UCHL1 by shRNA knockdown or its inhibitor LDN57444 or overexpression, we found that UCHL1 played a critical role in suppressing cytokines-induced inducible nitric oxide synthase expression in murine MSCs and indoleamine 2,3-dioxygenase expression in human MSCs, thereby restrained their immunosuppressive capacity. This effect of UCHL1 was attributed to the negative role in regulating NF-κB and STAT1 signaling, as exhibited by promoting NF-κB and STAT1 activation upon inhibition of UCHL1. Besides, inhibition of UCHL1 suppressed cytokines-induced MSC apoptosis via upregulation of Bcl-2. As a consequence, UCHL1-inhibited MSCs effectively alleviated concanavalin A-induced inflammatory liver injury. Therefore, our study demonstrates a novel role of UCHL1 in regulating the immunosuppressive capacity and survival of MSCs, which further affects their immunotherapy for inflammatory diseases.


Subject(s)
Immune Tolerance , Mesenchymal Stem Cells/immunology , Signal Transduction/immunology , Ubiquitin Thiolesterase/immunology , Animals , Humans , Indoles/pharmacology , Interferon-gamma/immunology , Mesenchymal Stem Cells/cytology , Mice , Oximes/pharmacology , Proto-Oncogene Proteins c-bcl-2/immunology , STAT1 Transcription Factor/immunology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/immunology , Ubiquitin Thiolesterase/antagonists & inhibitors
12.
Oncol Lett ; 14(3): 3839-3845, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28927155

ABSTRACT

RAS protein activator-like 1 (RASAL1) is a member of the RAS GTPase-activating protein family, and previous studies indicate that RASAL1 is involved in the progression of hypoxia resistance in breast cancer cells. In the present study, increased levels of hypoxia inducible factor-1α (HIF-1α) were observed to be accompanied with increased expression of RASAL1 in the breast cancer cell lines MCF-7 and MDA-MB-231 cells under hypoxia. Based on this, it was postulated that RASAL1 may serve a functional role in the development of hypoxia resistant in breast cancer cells. In the present study it was demonstrated that: i) Exogenous expression of RASAL1 in MCF-7 and MDA-MB-231 sensitized its reaction to the treatment of hypoxia, which is associated with its ability to directly reduce HIF-1α expression, inhibit migration activity and decrease the accumulation of reactive oxygen species (ROS); ii) knockdown of RASAL1 reversed its reaction to treatment with hypoxia; iii) RASAL1 directly regulated the expression of HIF-1α through the ROS-mediated, extracellular signal-regulated kinase and Akt pathway. These findings provide direct evidence that the RASAL1/HIF-1α axis may serve an essential role in the hypoxia resistance of breast cancer cells, suggesting that this signaling cohort may serve as a novel therapeutic target for the treatment of breast cancer.

13.
J AOAC Int ; 100(6): 1771-1775, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28534470

ABSTRACT

Osimertinib is a new-generation epidermal growth factor inhibitor for the treatment of non-small cell lung cancer. In the present study, a rapid and sensitive LC with tandem MS method was developed and validated for the determination of osimertinib in rat plasma. Chromatographic separation was carried out on a C18 column using acetonitrile and water containing 0.1% formic acid. The assay was validated over a concentration range of 1.0-1000 ng/mL for osimertinib, with a lower LOQ of 1.0 ng/mL. The intra- and interday accuracy values for osimertinib ranged from 92.66 to 101.50% and from 97.08 to 99.15%, respectively, and the intra- and interday precision values for osimertinib ranged from 6.25 to 10.34% and from 3.43 to 10.44%, respectively. The method was successfully applied in a pharmacokinetic study of osimertinib after oral administration of osimertinib (4.5 mg/kg) to rats.


Subject(s)
Chromatography, Liquid/methods , Piperazines/blood , Piperazines/pharmacokinetics , Tandem Mass Spectrometry/methods , Acrylamides , Administration, Oral , Aniline Compounds , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Drug Stability , Limit of Detection , Male , Piperazines/administration & dosage , Rats, Sprague-Dawley , Sensitivity and Specificity
14.
J Pharm Biomed Anal ; 140: 362-366, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28399431

ABSTRACT

A simple and sensitive high performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of AZD3759, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in rat plasma and brain homogenate was developed and validated over the range of 1.0-1000ng/mL. Chromatographic separation was carried out on a C18 column with acetonitrile and 0.1% formic acid in water as mobile phase with gradient elution at a flow rate of 0.4mL/min. The lower limits of quantification (LLOQs) were 1.0ng/mL for AZD3759 in both rat plasma and brain homogenate. The intra-day and inter-day precision and accuracy of AZD3759 were well within the acceptable limits of variation. The simple and sensitive LC-MS/MS method was successfully applied to the pharmacokinetic and brain distribution studies following an oral administration of AZD3759 to rats.


Subject(s)
Brain , Animals , Chromatography, Liquid , Piperazines , Quinazolines , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tandem Mass Spectrometry
15.
Eur J Med Chem ; 45(6): 2663-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20189693

ABSTRACT

A number of 5-phenylisoxazole-3-carboxylic acid derivatives (5a-e, 11a-e) were synthesized and analyzed for their ability to inhibit xanthine oxidase. Most of the compounds exhibited potency levels in the micromolar/submicromolar range. The presence of a cyano group at the 3-position of phenyl moiety turned out to be the preferred substitution pattern, as its transformation into the nitro group determined a general reduction of the inhibitory potency. A molecular modeling study on compound 11a was performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors related with 5-phenylisoxazole-3-carboxylic acid scaffold.


Subject(s)
Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Xanthine Oxidase/antagonists & inhibitors , Animals , Carboxylic Acids/chemistry , Cattle , Enzyme Inhibitors/chemistry , Humans , Isoxazoles/chemistry , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...