Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 513, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36720869

ABSTRACT

The hydrogenation of CO2 or CO to single organic product has received widespread attentions. Here we show a highly efficient and selective catalyst, Mo3S4@ions-ZSM-5, with molybdenum sulfide clusters ([Mo3S4]n+) confined in zeolitic cages of ZSM-5 molecular sieve for the reactions. Using continuous fixed bed reactor, for CO2 hydrogenation to methanol, the catalyst Mo3S4@NaZSM-5 shows methanol selectivity larger than 98% at 10.2% of carbon dioxide conversion at 180 °C and maintains the catalytic performance without any degeneration during continuous reaction of 1000 h. For CO hydrogenation, the catalyst Mo3S4@HZSM-5 exhibits a selectivity to C2 and C3 hydrocarbons stably larger than 98% in organics at 260 °C. The structure of the catalysts and the mechanism of COx hydrogenation over the catalysts are fully characterized experimentally and theorectically. Based on the results, we envision that the Mo3S4@ions-ZSM-5 catalysts display the importance of active clusters surrounded by permeable materials as mesocatalysts for discovery of new reactions.

2.
Chem Commun (Camb) ; 58(55): 7630-7633, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35713001

ABSTRACT

The atomic dispersion of a noble metal with a reducible support has been reported to be beneficial for catalytic hydrogenation reactions. Conversely, we found that Pt particles (3-5 nm) could be obtained on the non-reducible support Al2O3 by weakening the interaction between the metal and support using oleic acid, and the turnover frequency of catalyzing the hydrogenation of chlorinated nitrobenzene could reach 3700 h-1, which is three orders of magnitude higher than that of atomic platinum species.

3.
Langmuir ; 36(35): 10404-10411, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32787005

ABSTRACT

The crystal-facet effect of catalytic supports plays a crucial role in tailoring the physicochemical properties of active sites and the surface chemically bonded polymer can also regulate the local environment around active sites for optimizing catalytic performance. Herein, we report the effect of exposed facets of γ-Al2O3 supports and further modification by surface bonded long-chain polydimethylsiloxane (PDMS) on the properties of CrOx/γ-Al2O3 catalysts for selective oxidation of propene. The {111} facets of γ-Al2O3 stabilize "non-redox Cr3+" and promote the overall oxidation rates compared with catalysts on {110} facets of γ-Al2O3. The surface bonded PDMS, with grafting density being about 0.13 chains/nm2, endows a hydrophobic environment to facilitate the enrichment of the hydrophobic substrate and the desorption of hydrophilic products and occupies some acid sites on catalysts to limit acid-catalyzed side reactions. The inherent liquidlike nature of bonded PDMS also forms a setting that can regulate the redox ability of surface Cr species, that lead to modified activation of oxygen toward more surface adsorbed species. As a result, the modified catalysts enhance the whole oxidation process with favorable formation of epoxide product at low reaction temperatures (<225 °C). Our findings highlight the impact of surface chemically bound polydimethylsiloxane (PDMS) upon tailoring the surroundings of the catalyst surface, and that combined with facet-effect of supports can tune the reaction process toward selective ones.

4.
iScience ; 11: 388-397, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30660106

ABSTRACT

We report here a supercatalyst for oxygen reduction of Pt/CNx/Ni in a unique ternary heterostructure, in which the Pt and the underlying Ni nanoparticles are separated by two to three layers of nitrogen-doped carbon (CNx), which mediates the transfer of electrons from the inner Ni to the outer Pt and protects the Ni against corrosion at the same time. The well-engineered low-Pt catalyst shows ∼780% enhanced specific mass activity or 490% enhanced specific surface activity compared with a commercial Pt/C catalyst toward oxygen reduction. More importantly, the exceptionally strong tune on the Pt by the unique structure makes the catalyst superbly stable, and its mass activity of 0.72 A/mgPt at 0.90 V (well above the US Department of Energy's 2020 target of 0.44 A/mgPt at 0.90 V) after 50,000 cyclic voltammetry cycles under acidic conditions is still better than that of the fresh commercial catalyst.

5.
Sci Adv ; 1(1): e1400133, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26601133

ABSTRACT

Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H2 (17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications.

6.
J Phys Chem Lett ; 5(2): 363-9, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-26270712

ABSTRACT

By using a simple and efficient deuteration process, (2)H has been successfully introduced into layered double hydroxides (LDHs). Due to significantly less (1)H-(1)H homonuclear dipolar coupling, high-resolution (1)H solid-state NMR spectra can now be obtained conveniently at medium to low spinning speed to extract the information of cation ordering in LDHs. Furthermore, we show that double-resonance experiments can be applied easily to investigate internuclear proximities and test possible cation-ordered superstructure models. This approach can be readily extended to LDHs with different compositions to explore the local structure and the key interactions between the cations in the layer and interlayer anions.

7.
Nanoscale ; 5(20): 9546-52, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23978992

ABSTRACT

Au nanoparticles half-encapsulated in nano iron oxide are prepared and loaded on alumina as a support. The donation of electrons from nano iron oxide to Au nanoparticles is detected and both the properties of gold and iron oxide are adjusted by the donation. The properties are different from the bulk iron oxide supported gold catalysts, in which the iron oxide is little influenced by the electronic interaction between the two components. The catalyst shows noticeably promoted activity for the aerobic oxidation of 1-phenylethanol over Au-Al2O3 and Au-bulk FeOx. The enhanced catalytic behavior may result from the cooperative effect between the Au nanoparticles and nano iron oxide.


Subject(s)
Ferric Compounds/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Phenylethyl Alcohol/chemistry , Aluminum Oxide/chemistry , Catalysis , Colloids/chemistry , Oxidation-Reduction
8.
Langmuir ; 23(2): 382-6, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209581

ABSTRACT

Iron phosphate nanotubes with mesoporous walls are solvothermally synthesized using sodium dodecyl sulfate (SDS) as a template. With different template concentrations, various shapes of nanosized iron phosphates can be obtained. When the concentration of SDS is set at the transition regions between the lamellar and the hexagonal mesophases, according to its phase diagram, the coassembly of iron phosphate precursor and SDS forms a flake-type mesoporous iron phosphate. Otherwise, nanoparticles or bulky sheets of iron phosphates are obtained. The followed solvothermal treatments on the mesoporous iron phosphate flakes produce iron phosphate nanotubes with mesoporous walls. The removal of the surfactant by acetate exchange and heat treatment results in the clean mesoporous nanotubes of iron phosphate with diameters of 50-400 nm and lengths of several microns. The nanotubular and mesoporous iron phosphate possesses a specific surface area of 232 m2/g and a bimodal distribution of pore sizes, corresponding to the size of mesopores in the walls and the diameter of the nanotubes, respectively. The novel nanotubular iron phosphate with composite meso-macroporous structure, in favor of the diffusion of reactive molecules, has been tested for direct hydroxylation of benzene with hydrogen peroxide and has shown better catalytic performance compared with the conventional particulate mesoporous iron phosphate.

SELECTION OF CITATIONS
SEARCH DETAIL
...