Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Front Microbiol ; 14: 1085387, 2023.
Article in English | MEDLINE | ID: mdl-36910227

ABSTRACT

Rhizosphere microorganisms are important organisms for plant growth promotion and bio-control. To understand the research hot topics and frontier trends of rhizosphere microorganisms comprehensively and systematically, we collected 6,056 publications on rhizosphere microorganisms from Web of Science and performed a bibliometric analysis by CiteSpace 6.1.3 and R 5.3.1. The results showed that the total number of references issued in this field has been on the rise in the past decades. China, India, and Pakistan are the top three countries in terms of the number of articles issued, while Germany, the United States, and Spain were the countries with the highest number of co-published papers with other countries. The core research content in this field were the bio-control, bacterial community, ACC deaminase, phytoremediation, induced systematic resistance, and plant growth promotion. Seeding growth, Bacillus velezensis, plant-growth, and biological-control were currently and may be the highlights in the field of rhizosphere microorganisms research for a long time in the future. The above study results quantitatively, objectively, and scientifically described the research status and research focus of rhizosphere microorganisms from 2012 to 2021 from the perspective of referred papers, with a view to promoting in-depth research in this field and providing reference information for scholars in related fields to refine research trends and scientific issues.

2.
Mater Sci Eng C Mater Biol Appl ; 65: 232-9, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27157748

ABSTRACT

This study examined the femtosecond laser ablation properties of core and shell polymers their relationship to the ablation characteristics of core-shell nanofibers. The single-pulse ablation threshold of bulk polycaprolactone (PCL) was measured to be 2.12J/cm(2) and that of bulk polydimethylsiloxane (PDMS) was 4.07J/cm(2). The incubation coefficients were measured to be 0.82±0.02 for PCL and 0.53±0.03 for PDMS. PDMS-PCL core-shell and pure PCL nanofibers were fabricated by electrospinning. The energy/volume of pure PCL and PDMS-PCL core-shell nanofiber ablation was investigated by measuring linear ablation grooves made at different scanning speeds. At large scanning speed, higher energy/volume was required for machining PDMS-PCL nanofiber than for PCL nanofiber. However, at small scanning speed, comparable energy/volume was measured for PDMS-PCL and PCL nanofiber ablation. Additionally, in linear scanned ablation of PDMS-PCL fibers at small laser pulse energy and large scanning speed, there were partially ablated fibers where the shell was ablated but the core remained. This was attributed to the lower ablation threshold of the shell material.


Subject(s)
Lasers , Nanofibers/chemistry , Dimethylpolysiloxanes/chemistry , Microscopy, Electron, Scanning , Polyesters/chemistry
3.
Biomed Microdevices ; 18(2): 38, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27106026

ABSTRACT

EPR (electron paramagnetic resonance) based biological oximetry is a powerful tool that accurately and repeatedly measures tissue oxygen levels. In vivo determination of oxygen in tissues is crucial for the diagnosis and treatment of a number of diseases. Here, we report the first successful fabrication and remarkable properties of nanofiber sensors for EPR-oximetry applications. Lithium octa-n-butoxynaphthalocyanine (LiNc- BuO), an excellent paramagnetic oxygen sensor, was successfully encapsulated in 300-500 nm diameter fibers consisting of a core of polydimethylsiloxane (PDMS) and a shell of polycaprolactone (PCL) by electrospinning. This core-shell nanosensor (LiNc-BuO-PDMS-PCL) shows a linear dependence of linewidth versus oxygen partial pressure (pO2). The nanofiber sensors have response and recovery times of 0.35 s and 0.55 s, respectively, these response and recovery times are ~12 times and ~218 times faster than those previously reported for PDMS-LiNc-BuO chip sensors. This greater responsiveness is likely due to the high porosity and excellent oxygen permeability of the nanofibers. Electrospinning of the structurally flexible PDMS enabled the fabrication of fibers having tailored spin densities. Core-shell encapsulation ensures the non-exposure of embedded LiNc-BuO and mitigates potential biocompatibility concerns. In vitro evaluation of the fiber performed under exposure to cultured cells showed that it is both stable and biocompatible. The unique combination of biocompatibility due to the PCL 'shell,' the excellent oxygen transparency of the PDMS core, and the excellent oxygen-sensing properties of LiNc-BuO makes LiNc-BuO-PDMS-PCL platform promising for long-term oximetry and repetitive oxygen measurements in both biological systems and clinical applications.


Subject(s)
Magnetic Phenomena , Nanofibers/chemistry , Oximetry/instrumentation , Animals , CHO Cells , Cricetinae , Cricetulus , Dimethylpolysiloxanes/chemistry , Materials Testing , Oxygen/analysis , Polyesters/chemistry , Porphyrins/chemistry , Pressure , Time Factors
4.
Biomaterials ; 76: 208-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26524540

ABSTRACT

To fully understand biological behavior in vitro often dictates that oxygen be reported at either a local or a cellular level. Oxygen sensors based on the luminescent quenching of a specific form of electrospun fiber were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition-metal porphyrin complexes are embedded in an optically clear, gas permeable polycarbonate polymer 'core' while polycaprolactone provided a protective yet biocompatible 'shell'. By taking advantage of the resulting high sensitivity and fast response of electrospun core-shell fiber sensors, we were able to locate and image hypoxic regions in contact with aggregates of glioblastoma cells. Nanoscale, biomimetic sensors containing oxygen-sensitive porphyrins are particularly well suited to biological applications. These 'smart' nanofiber based sensors do not consume oxygen, their mechanical and chemical characteristics can be finely tuned allowing tailoring of biocompatibility and microstructure. Core-shell nanofiber oxygen sensing fibers could provide real-time assessments of tumor cell response to pharmacological innovations designed to target hypoxic regions driving new knowledge and technological advancement.


Subject(s)
Alveolar Process/pathology , Antioxidants/therapeutic use , Bone Resorption/prevention & control , Disease Models, Animal , Nanotechnology , Periodontitis/drug therapy , Reactive Oxygen Species/metabolism , Animals , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Malondialdehyde/metabolism , Mice, Inbred ICR , Oxidation-Reduction , Periodontitis/metabolism , Rats
5.
ACS Appl Mater Interfaces ; 7(16): 8606-14, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25850567

ABSTRACT

Biomimetic polymer nanofibers integrate sensing capabilities creating utility across many biological and biomedical applications. We created fibers consisting of either a poly(ether sulfone) (PES) or a polysulfone (PSU) core coated by a biocompatible polycaprolactone (PCL) shell to facilitate cell attachment. Oxygen sensitive luminescent probes Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) or Pd(II) meso-tetra(pentafluorophenyl)porphine (PdTFPP), were incorporated in the core via single-step coaxial electrospinning providing superior sensitivity, high brightness, linear response, and excellent stability. Both PES-PCL and PSU-PCL fibers provide more uniform probe distribution than polydimethylsiloxane (PDMS). PSU-based sensing fibers possessed optimum sensitivity due to their relatively higher oxygen permeability. During exposure to 100% nitrogen and 100% oxygen, PES-PCL fiber displayed an I0/I100 value of 6.7; PSU-PCL exhibited a value of 8.9 with PtTFPP as the indicator. In contrast, PdTFPP-containing fibers possess higher sensitivity due to the long porphyrin lifetime. The corresponding I0/I100 values were 80.6 and 106.7 for the PES-PCL and PSU-PCL matrices, respectively. The response and recovery times were 0.24/0.39 s for PES-PCL and 0.38/0.83 s for PSU-PCL which are 0.12 and 0.11 s faster, respectively, than the Pt-based porphyrin in the same matrices. Paradoxically, lower oxygen permeabilities make these polymers better suited to measuring higher (i. e., ∼20%) oxygen contents than PDMS. Individual fiber sensing was studied by fluorescence spectrometry and at a sub-micrometer scale by total internal reflection fluorescence (TIRF). Specific polymer blends relate polymer composition to the resulting sensor properties. All compositions displayed linear Stern-Volmer plots; sensitivity could be tailored by matrix or the sensing probe selection.


Subject(s)
Nanofibers/chemistry , Oxygen/analysis , Polymers/chemistry , Porphyrins/chemistry , Acrylic Resins/chemistry , Cell Line, Tumor , Humans , Image Processing, Computer-Assisted , Nanofibers/ultrastructure , Nitrogen/analysis , Permeability , Polyesters , Spectrometry, Fluorescence , Sulfones/chemistry
6.
Biomaterials ; 52: 395-406, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818446

ABSTRACT

Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 µm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them 'actin grips'. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Biocompatible Materials/chemistry , Endothelial Cells/cytology , Polymers/chemistry , Animals , Cell Differentiation , Cell Membrane/metabolism , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Phagocytosis , Polyesters/chemistry , Stress Fibers/pathology , Tissue Engineering/methods
7.
Biotechnol Prog ; 30(5): 1214-20, 2014.
Article in English | MEDLINE | ID: mdl-25044995

ABSTRACT

Aligned fibers have been shown to facilitate cell migration in the direction of fiber alignment while oxygen (O2 )-carrying solutions improve the metabolism of cells in hypoxic culture. Therefore, U251 aggregate migration on poly(ε-caprolactone) (PCL)-aligned fibers was studied in cell culture media supplemented with the O2 storage and transport protein hemoglobin (Hb) obtained from bovine, earthworm and human sources at concentrations ranging from 0 to 5 g/L within a cell culture incubator exposed to O2 tensions ranging from 1 to 19% O2 . Individual cell migration was quantified using a wound healing assay. In addition, U251 cell aggregates were developed and aggregate dispersion/cell migration quantified on PCL-aligned fibers. The results of this work show that the presence of bovine or earthworm Hb improved individual cell viability at 1% O2 , while human Hb adversely affected cell viability at increasing Hb concentrations and decreasing O2 levels. The control data suggests that decreasing the O2 tension in the incubator from 5 to 1% O2 decreased aggregate dispersion on the PCL-aligned fibers. However, the addition of bovine Hb at 5% O2 significantly improved aggregate dispersion. At 19% O2 , Hb did not impact aggregate dispersion. Also at 1% O2 , aggregate dispersion appeared to increase in the presence of earthworm Hb, but only at the latter time points. Taken together, these results show that Hb-based O2 carriers can be utilized to improve O2 availability and the migration of glioma spheroids on nanofibers.


Subject(s)
Cell Culture Techniques/methods , Cell Movement/drug effects , Glioma/metabolism , Nanofibers/chemistry , Oxyhemoglobins/pharmacology , Polyesters/chemistry , Animals , Cattle , Cell Line, Tumor , Cell Survival/drug effects , Culture Media/pharmacology , Humans , Oligochaeta , Wound Healing
8.
Sens Actuators B Chem ; 192: 697-707, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-25006274

ABSTRACT

Real-time, continuous monitoring of local oxygen contents at the cellular level is desirable both for the study of cancer cell biology and in tissue engineering. In this paper, we report the successful fabrication of polydimethylsiloxane (PDMS) nanofibers containing oxygen-sensitive probes by electrospinning and the applications of these fibers as optical oxygen sensors for both gaseous and dissolved oxygen. A protective 'shell' layer of polycaprolactone (PCL) not only maintains the fiber morphology of PDMS during the slow curing process but also provides more biocompatible surfaces. Once this strategy was perfected, tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) (Ru(dpp)) and platinum octaethylporphyrin (PtOEP) were dissolved in the PDMS core and the resulting sensing performance established. These new core-shell sensors containing different sensitivity probes showed slight variations in oxygen response but all exhibited excellent Stern-Volmer linearity. Due in part to the porous nature of the fibers and the excellent oxygen permeability of PDMS, the new sensors show faster response (<0.5 s) -4-10 times faster than previous reports - than conventional 2D film-based oxygen sensors. Such core-shell fibers are readily integrated into standard cell culture plates or bioreactors. The photostability of these nanofiber-based sensors was also assessed. Culture of glioma cell lines (CNS1, U251) and glioma-derived primary cells (GBM34) revealed negligible differences in biological behavior suggesting that the presence of the porphyrin dyes within the core carries with it no strong cytotoxic effects. The unique combination of demonstrated biocompatibility due to the PCL 'shell' and the excellent oxygen transparency of the PDMS core makes this particular sensing platform promising for sensing in the context of biological environments.

9.
Mater Sci Eng C Mater Biol Appl ; 33(6): 3450-7, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23706233

ABSTRACT

Molecular oxygen has profound effects on cell and tissue viability. Relevant sensor forms that can rapidly determine dissolved oxygen levels under biologically relevant conditions provide critical metabolic information. Using 0.5 µm diameter electrospun polycaprolactone (PCL) fiber containing an oxygen-sensitive probe, tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, we observed a response time of 0.9±0.12 s while the t95 for the corresponding film was more than two orders of magnitude greater. Interestingly, the response and recovery times of slightly larger diameter PCL fibers were 1.79±0.23 s and 2.29±0.13 s, respectively, while the recovery time was not statistically different likely due to the more limited interactions of nitrogen with the polymer matrix. A more than 10-fold increase in PCL fiber diameter reduces oxygen sensitivity while having minor effects on response time; conversely, decreases in fiber diameter to less than 0.5 µm would likely decrease response times even further. In addition, a 50°C heat treatment of the electrospun fiber resulted in both increased Stern-Volmer slope and linearity likely due to secondary recrystallization that further homogenized the probe microenvironment. At exposure times up to 3600 s in length, photobleaching was observed but was largely eliminated by the use of either polyethersulfone (PES) or a PES-PCL core-shell composition. However, this resulted in 2- and 3-fold slower response times. Finally, even the non-core shell compositions containing the Ru oxygen probe result in no apparent cytotoxicity in representative glioblastoma cell populations.


Subject(s)
Nanofibers/chemistry , Organometallic Compounds/chemistry , Oxygen/analysis , Phenanthrolines/chemistry , Spectrophotometry , Cell Line, Tumor , Cell Survival/drug effects , Gases/chemistry , Humans , Nanofibers/toxicity , Photobleaching , Polyesters/chemistry , Polyesters/toxicity , Polymers/chemistry , Sulfones/chemistry
10.
Biomaterials ; 34(21): 5181-90, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23601662

ABSTRACT

Glioblastoma multiforme (GBM), one of the deadliest forms of human cancer, is characterized by its high infiltration capacity, partially regulated by the neural extracellular matrix (ECM). A major limitation in developing effective treatments is the lack of in vitro models that mimic features of GBM migration highways. Ideally, these models would permit tunable control of mechanics and chemistry to allow the unique role of each of these components to be examined. To address this need, we developed aligned nanofiber biomaterials via core-shell electrospinning that permit systematic study of mechanical and chemical influences on cell adhesion and migration. These models mimic the topography of white matter tracts, a major GBM migration 'highway'. To independently investigate the influence of chemistry and mechanics on GBM behaviors, nanofiber mechanics were modulated by using different polymers (i.e., gelatin, poly(ethersulfone), poly(dimethylsiloxane)) in the 'core' while employing a common poly(ε-caprolactone) (PCL) 'shell' to conserve surface chemistry. These materials revealed GBM sensitivity to nanofiber mechanics, with single cell morphology (Feret diameter), migration speed, focal adhesion kinase (FAK) and myosin light chain 2 (MLC2) expression all showing a strong dependence on nanofiber modulus. Similarly, modulating nanofiber chemistry using extracellular matrix molecules (i.e., hyaluronic acid (HA), collagen, and Matrigel) in the 'shell' material with a common PCL 'core' to conserve mechanical properties revealed GBM sensitivity to HA; specifically, a negative effect on migration. This system, which mimics the topographical features of white matter tracts, should allow further examination of the complex interplay of mechanics, chemistry, and topography in regulating brain tumor behaviors.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Cell Movement , Glioblastoma/pathology , Nanofibers/chemistry , Blotting, Western , Brain Neoplasms/enzymology , Cardiac Myosins/metabolism , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Shape/drug effects , Dimethylpolysiloxanes/chemistry , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Glioblastoma/enzymology , Humans , Mechanical Phenomena/drug effects , Myosin Light Chains/metabolism , Nanofibers/ultrastructure , Polyesters/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL