Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pain ; 19: 17448069231190815, 2023.
Article in English | MEDLINE | ID: mdl-37464536

ABSTRACT

Neuropathic pain (NP) occurs frequently in the general population and has a negative impact on the quality of life. There is no effective therapy available yet owing to the complex pathophysiology of NP. In our previous study, we found that urolithin A (UA), a naturally occurring microflora-derived metabolite, could relieve NP in mice by inhibiting the activation of microglia and release of inflammation factors. Here in this study, we sought to investigate whether mitophagy would be activated when UA alleviated NP in mice. We showed that the autophagy flow was blocked in the spinal dorsal horn of the chronic constriction injury (CCI) mice when the most obvious pain behavior occurs. Intraperitoneal injection of UA markedly activated the mitophagy mediated by PTEN-induced kinase 1/Parkin, promoted mitobiogenesis in both neurons and microglia, and alleviated NP in the CCI mice. In summary, our data suggest that UA alleviates NP in mice and meanwhile induces mitophagy activation, which highlights a therapeutic potential of UA in the treatment of NP.


Subject(s)
Mitophagy , Neuralgia , Humans , Mice , Animals , Mitophagy/physiology , Quality of Life , Spinal Cord Dorsal Horn/metabolism , Neuralgia/metabolism
2.
BMC Plant Biol ; 21(1): 591, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903180

ABSTRACT

BACKGROUND: Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis. RESULTS: The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites. CONCLUSION: The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.


Subject(s)
Metabolome , Plant Oils/chemistry , Thymelaeaceae/metabolism , Wood/metabolism , Alkaloids/metabolism , Amino Acids/metabolism , Carboxylic Acids/metabolism , Cold Temperature , Ethanol , Fires , Flavones/metabolism , Flavonoids/metabolism , Hydroxybenzoates/metabolism , Lipid Metabolism , Nucleotides/metabolism , Salts/pharmacology , Terpenes/metabolism , Thymelaeaceae/chemistry , Thymelaeaceae/drug effects , Wood/chemistry , Wood/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...