Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903542

ABSTRACT

Inflammatory response and cell death play key roles in the mechanism of myocardial cell injury induced by heat stroke (HS) in rats. Ferroptosis is a newly discovered regulatory type of cell death, which is involved in the occurrence and development of various cardiovascular diseases. However, the role of ferroptosis in the mechanism of cardiomyocyte injury caused by HS remains to be clarified. The purpose of this study was to investigate the role and potential mechanism of Toll-like receptor 4 (TLR4) in cardiomyocyte inflammation and ferroptosis under HS conditions at the cellular level. The HS cell model was established by exposing H9C2 cells at 43 °C for 2 h and then recovering at 37 °C for 3 h. The association between HS and ferroptosis was investigated by adding the ferroptosis inhibitor, liproxstatin-1, and the ferroptosis inducer, erastin. The results show that the expressions of ferroptosis-related proteins recombinant solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were decreased, the contents of glutathione (GSH) were decreased, and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ were increased in H9C2 cells in the HS group. Moreover, the mitochondria of the HS group became smaller and the membrane density increased. These changes were consistent with the effects of erastin on H9C2 cells and were reversed with liproxstatin-1. The addition of TLR4 inhibitor TAK-242 or NF-κB inhibitor PDTC reduced the expressions of NF-κB and p53, increased the expressions of SLC7A11 and GPX4, reduced the contents of TNF-α, IL-6 and IL-1ß, increased the content of GSH and reduced MDA, ROS, and Fe2+ levels in H9C2 cells under the HS condition. TAK-242 may improve the mitochondrial shrinkage and membrane density of H9C2 cells induced by HS. In conclusion, this study illustrated that inhibition of the TLR4/NF-κB signaling pathway can regulate the inflammatory response and ferroptosis induced by HS, which provides new information and a theoretical basis for the basic research and clinical treatment of cardiovascular injuries caused by HS.


Subject(s)
Ferroptosis , Heat Stroke , Rats , Animals , Myocytes, Cardiac , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Inflammation/metabolism , Heat Stroke/metabolism
2.
J Food Sci Technol ; 59(10): 4025-4036, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36193358

ABSTRACT

In this study, we investigated the non-volatile flavor compounds (5'-nucleotides, free amino acids, organic acids and soluble sugars) in Stropharia rugosoannulata soup under different processing treatments. S. rugosoannulata soups were first obtained from S. rugosoannulata powder of three different particle sizes under both thermal and non-thermal treatments. Then, the effects of processing methods on non-volatile compounds in these S. rugosoannulata soups were investigated. Specifically, the non-thermal treatment of high hydrostatic pressure (HHP) resulted in high levels of equivalent umami concentration (EUC, 827.44-1411.79 mg/100 g DM); ultrasonic treatment (UT) and homogenization (HG) led to high concentrations of soluble sugars (15.58-30.48 mg/g DM); while hot treatment (HT) contributed to high contents of total organic acids (65.52-98.39 mg/g DM). Besides, moderate fine grinding of S. rugosoannulata powder (P2) facilitated the release FAAs (free amino acids) and soluble sugars in the soup. These results suggested that HHP-P2 is beneficial to the preservation of non-volatile compounds in S. rugosoannulata soup. Our findings may improve the utilization of S. rugosoannulata in the soup industry.

3.
Food Chem ; 373(Pt B): 131478, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34731791

ABSTRACT

Microbial infection, senescence and water losses result in serious quality deterioration of postharvest mushrooms. The aim of this study was to investigate the impact of ultrasound treatment (US), gamma irradiation treatment (GI) and their combination on quality maintenance of fresh Lentinula edodes during storage. The results showed that US + GI was the most effective approach to maintaining the quality of mushrooms. US + GI reduced natural microflora present on L. edodes, such as total number of colonies, molds, yeasts, Pseudomonas and Enterobacteriaceae. Furthermore, US + GI stimulated phenylalanine ammonia lyase, maintained the highest level of total phenolic content (733.63 mg GAE/kg on Day 4), and postponed the occurrence of reduced ascorbic acid (33.7% retention relative to the control), which contributed to strengthening the antioxidant capacity. Additionally, US + GI retarded water mobility and loss. In brief, the US + GI in this study is an effective hurdle technology for preserving the quality of fresh L. edodes during storage.


Subject(s)
Agaricales , Shiitake Mushrooms , Antioxidants , Phenols
4.
Biomed Rep ; 11(5): 207-214, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31632668

ABSTRACT

Cell injury in the cardiovascular endothelia caused by oxidative stress is among the major inducers of endothelium dysfunction and serves an important role in initiating cardiovascular diseases (CVDs). Therefore, protecting and improving the normal function of endothelial cells are considered key measures against CVDs. As a traditional Chinese medicinal component, Lycium barbarum is regarded to have high medicinal value. The present study aimed to investigate the potential anti-apoptosis and anti-oxidation effects of Lycium barbarum polysaccharides (LBPs) on injured rat artery endothelial cells, to demonstrate the experimental and medicinal values of LBPs. In the present study, the aortic endothelial cells of rats were cultivated and randomly divided into five groups: A control group, H2O2-injured group (H2O2 group), H2O2+LBPs (110 µg/ml) group (low-dose group, LT), H2O2+LBPs (220 µg/ml) group (medium-dose group, MT) and H2O2+LBPs (440 µg/ml) group (high-dose group, HT). Among these, the activity of superoxide dismutase (SOD), and the levels of malondialdehyde (MDA) and nitric oxide (NO) were detected by colorimetry. Additionally, the expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blotting. It was observed that SOD activity and NO content decreased while MDA content increased significantly in the H2O2 group (P<0.05 vs. control); that SOD activity in the MT and HT group, and NO content in all three LBP groups were increased, while MDA content in the three LBP groups was decreased, compared with the H2O2 group (all P<0.05); that Bcl-2 expression decreased significantly in the H2O2 group while the expression of Bax increased significantly compared with the control group (both P<0.05); and that Bcl-2 expression in all three LBP groups increased, while Bax expression in the MT and HT groups decreased compared with the H2O2 group (all P<0.05), with these altered Bax levels being statistically similar to those in the control group (P>0.05). On light microscopy, the cells in the control group exhibited spindle-shaped morphology, consistent sizes, defined boundaries, and distinct nuclei of equivalent sizes with round or oval morphology. Additionally, the chromatin in the nuclei was evenly distributed, and all cells were adhered in a paving-stone arrangement. Notably, only few cells died. Conversely, the cells in the H2O2 group exhibited signs of damage and enlarged gaps, and focal cells died. In the HT group, the cells once again appeared adherent and exhibited similar morphological status to the normal cells. Overall, these results indicate that LBPs serve a protective role in oxidative-injured vascular endothelial cells through anti-apoptosis and anti-oxidation effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...