Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 228: 115822, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37028542

ABSTRACT

Al-KBC was produced through the simple pyrolysis of Al-modified kapok fibres at high temperatures. Using the N2 adsorption Brunauer Emmett Teller (BET) process, Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the energy-dispersive X-ray spectroscopy (EDS) spectroscopy, and X-ray photoelectron spectroscopy (XPS), the sorbent changes and characteristics were analysed. As a result of Al's addition to the fibre's surface, Al-KBC exhibited superior As(V) adsorption performance compared to KBC due to better pore structures. Experiments on the kinetics of As(V) adsorption revealed that the adsorption followed the pseudo-second-order model and that intradiffusion was not the only factor governing the adsorption. Experiments with isotherms indicated that the adsorption mechanism corresponded to the Langmuir model, and the adsorption capacity Qm of Al-KBC at 25 °C was 483 µg/g. The thermodynamic experiments suggested that the adsorption reactions were spontaneous endothermic with a random approach at the adsorption interface. 25 mg/L of coexisting ions such as sulphate and phosphate reduced the sorbent As(V) removal ability to 65% and 39%. After seven cycles of adsorption/desorption, Al-KBC demonstrated satisfactory performance in terms of reusability, adsorbing 53% of 100 µg/L As(V) from the water. This novel BC can probably be used as a filter to purify groundwater with high As(V) concentration in the rural zone.


Subject(s)
Arsenates , Water Pollutants, Chemical , Adsorption , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry , Kinetics , Water , Hydrogen-Ion Concentration
2.
J Hazard Mater ; 448: 130833, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36716556

ABSTRACT

As a vital freshwater resource, rainwater is usually stored in water cellars in arid regions to solve the daily drinking water problems of the population. However, the status of disinfection by-products (DBPs) generation in cellar water under intermittent disinfection conditions is unclear. Therefore, we investigated the formation and distribution characteristics of DBPs in cellar water under intermittent disinfection conditions for the first time. The results demonstrated that six categories of DBPs were selected for detection after chlorination, including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), haloacetonitriles (HANs), halonitromethanes (HNMs), and nitrosamines (NAs), among which HAAs, HKs, and HANs were the major DBPs. Only bromoacetic acid (MBAA), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA) showed an increasing trend of accumulation as the number of disinfections increased. Meanwhile, the precursor composition was gradually transformed from humic substances to amino acids, and both organic substances were the main precursors of HAAs. The health risk assessment showed that the main carcinogenic and non-carcinogenic risks of cellar water were contributed by NAs and HAAs, respectively, and children are more susceptible to the risks than adults. The best time to drink cellar water is after approximately 12 days of storage, when the total carcinogenic risk is the minimum.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Child , Humans , Disinfection/methods , Disinfectants/analysis , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Water Supply , Water Purification/methods , Halogenation , Trihalomethanes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...