Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Res (Camb) ; 12(6): 1159-1170, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145092

ABSTRACT

Purpose: Triphenyl phosphate (TPHP) is a widely used organophosphate flame retardant, which can be transformed in vivo into diphenyl phosphate (DPHP) and 4-hydroxyphenyl phosphate (diphenyl) ester (OH-TPHP) through biotransformation process. Accumulation of TPHP and its derivatives in biological tissues makes it necessary to investigate their toxicity and molecular mechanism. Methods: The present study evaluated the cellular effects of TPHP, DPHP, and OH-TPHP on cell survival, cell membrane damage, oxidative damage, and cell apoptosis using HeLa cells as in vitro model. RNA sequencing and bioinformatics analysis were conducted to monitor the differently expressed genes, and then RT-qPCR and Western bolt were used to identify potential molecular mechanisms and key hub genes. Results: Results showed that OH-TPHP had the most significant cytotoxic effect in HeLa cells, followed by TPHP; and no significant cytotoxic effects were observed for DPHP exposure within the experimental concentrations. Biological function enrichment analysis suggested that TPHP and OH-TPHP exposure may induce endoplasmic reticulum stress (ERS) and cell apoptosis. The nodes filtering revealed that ERS and apoptosis related genes were involved in biological effects induced by TPHP and OH-TPHP, which may be mediated through the eukaryotic translation initiation factor 2α/activating transcription factor 4 (ATF4)/ATF3- CCAAT/ enhancer-binding protein homologous protein (CHOP) cascade pathway and death receptor 5 (DR5) /P53 signaling axis. Conclusion: Above all, these findings indicated that ERS-mediated apoptosis might be one of potential mechanisms for cytotoxicity of TPHP and OH-TPHP.

2.
Sci Total Environ ; 813: 151899, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34838543

ABSTRACT

Exposure to ambient ultrafine black carbon (uBC, with aerodynamic diameter less than 100 nm) is associated with many neurodegenerative diseases. Oxidative stress is the predominantly reported neurotoxic effects caused by uBC exposure. Mitochondrion is responsible for production of majority of ROS in cells and mitochondrial dysfunction is closely related to adverse nervous outcomes. Mitophagy is an important cellular process to eliminate dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy and mitochondrial dysfunction initiated by uBC remain to be elucidated. The purpose of this study was to investigate how mitochondrial oxidative stress regulated mitochondrial dysfunction and mitophagy in human neuroblastoma cell line (SH-SY5Y) after uBC treatment. RNA interference was further applied to explore the roles of mitophagy in mitochondrial dysfunction. We found uBC triggered cell apoptosis via ROS-mitochondrial apoptotic pathway. The uBC also caused serious mitochondrial damage and respiratory dysfunction, indicated by the abnormalities in mitochondrial division and fusion related proteins, decreased mitochondria number and ATP level. Increased PTEN induced putative kinase 1 (PINK1) and Parkin protein levels and the autolysosome numbers suggested uBC could promote Pink1/Parkin-dependent mitophagy process in SH-SY5Y cells. Mitophagy inhibition could reserve mitochondria number and ATP activity, but not fusion and division related protein levels in SH-SY5Y cells exposed to uBC. Administration of a mitochondria-targeted antioxidant (mitoquinone) significantly eliminated uBC caused apoptosis, mitochondrial dysfunction and mitophagy. Our data suggested mitochondrial oxidative stress regulated uBC induced mitochondrial dysfunction and PINK1/Parkin-dependent mitophagy. PINK1/Parkin-dependent mitophagy probably participated in regulating uBC caused mitochondrial dysfunction but not by controlling mitochondrial fusion and division related proteins. Our results may provide some new insights and evidences to understand the mechanisms of neurotoxicity induced by uBC.


Subject(s)
Mitophagy , Protein Kinases , Carbon/metabolism , Cell Line, Tumor , Humans , Mitochondria/metabolism , Oxidative Stress , Protein Kinases/metabolism
3.
Environ Pollut ; 289: 117890, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34358868

ABSTRACT

Ambient fine particulate matter (PM2.5) is a worldwide environmental problem and is posing a serious threat to human health. Until now, the molecular toxicological mechanisms and the crucial toxic components of PM2.5 remain to be clarified. This study investigated the whole transcriptomic changes in THP-1 derived macrophages treated with different types of PM2.5 extracts using RNA sequencing technique. Bioinformatics analyses covering biological functions, signal pathways, protein networks and node genes were performed to explore the candidate pathways and critical genes, and to find the potential molecular mechanisms. Results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and protein-protein interaction (PPI) networks revealed that water extracts (WEs) of PM2.5 obviously influenced genes and molecular pathways responded to oxidative stress and inflammation. Dichloromethane extracts (DEs) specifically affected genes and signal cascades related to cell cycle progress process. Furthermore, compared with WEs collected in heating season, non-heating season WEs induced much higher expression levels of Ca-associated genes (including phosphodiesterase 4B and cyclooxygenase-2), which may consequently result in more severe inflammatory responses. While, for DEs exposure, the heating season (DH) group showed extensive induction of deferentially expressed genes (DEGs) related to cell cycle pathway, which may be caused by the higher polycyclic aromatic hydrocarbons (PAHs) contents in DH samples than those from non-heating season. In conclusion, the oxidative stress and inflammation response are closely correlated with cellular responses in THP-1 derived macrophages induced by water soluble components of PM2.5, and cell cycle dysregulation may play an important role in biological effects induced by organic components. The different transcriptomic changes induced by seasonal PM2.5 extracts may partially depend on the contents of PAHs and metal ions, respectively.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Humans , Macrophages , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Transcriptome
4.
Ecotoxicol Environ Saf ; 222: 112523, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34273852

ABSTRACT

Micro- and nano- polystyrene particles have been widely detected in environment, posing potential threats to human health. This study was designed to evaluate the neurodevelopmental toxicity of polystyrene nanoparticles (NPs) in Caenorhabditis elegans (C. elegans), to screen crucial genes and investigate the underlying mechanism. In wild-type C. elegans, polystyrene NPs (diameter 50 nm) could concentration-dependently induce significant inhibition in body length, survival rate, head thrashes, and body bending, accompanying with increase of reactive oxygen species (ROS) production, lipofuscin accumulation, and apoptosis and decrease of dopamine (DA) contents. Moreover, pink-1 mutant was demonstrated to alleviate the locomotion disorders and oxidative damage induced by polystyrene NPs, indicating involvement of pink-1 in the polystyrene NPs-induced neurotoxicity. RNA sequencing results revealed 89 up-regulated and 56 down-regulated differently expressed genes (DEGs) response to polystyrene NPs (100 µg/L) exposure. Gene Ontology (GO) enrichment analysis revealed that predominant enriched DEGs were correlated with biological function of cuticle development and molting cycle. Furthermore, mutant strains test showed that the neurodevelopmental toxicity and oxidative stress responses induced by 50 nm polystyrene NPs were regulated by dpy-5 and rol-6. In general, polystyrene NPs induced obvious neurodevelopmental toxicity in C. elegans through oxidative damage and dopamine reduction. Crucial genes dpy-5 and rol-6 might participate in polystyrene NPs-induced neurodevelopmental toxicity through regulation on synthesis and deposition of cuticle collagen.


Subject(s)
Caenorhabditis elegans Proteins , Nanoparticles , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Collagen , Humans , Nanoparticles/toxicity , Oxidative Stress , Polystyrenes , Reactive Oxygen Species
5.
J Agric Food Chem ; 66(20): 5229-5236, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29738246

ABSTRACT

Cadmium (Cd) contamination of agricultural soils represents a serious risk to crop safety. A new strategy using abscisic acid (ABA)-generating bacteria, Bacillus subtilis or Azospirillum brasilense, was developed to reduce the Cd accumulation in plants grown in Cd-contaminated soil. Inoculation with either bacterium resulted in a pronounced increase in the ABA level in wild-type Arabidopsis Col-0 plants, accompanied by a decrease in Cd levels in plant tissues, which mitigated the Cd toxicity. As a consequence, the growth of plants exposed to Cd was improved. Nevertheless, B. subtilis and A. brasilense inoculation had little effect on Cd levels and toxicity in the ABA-insensitive mutant snrk 2.2/2.3, indicating that the action of ABA is required for these bacteria to reduce Cd accumulation in plants. Furthermore, inoculation with either B. subtilis or A. brasilense downregulated the expression of IRT1 (iron-regulated transporter 1) in the roots of wild-type plants and had little effect on Cd levels in the IRT1-knockout mutants irt1-1 and irt1-2. In summary, we conclude that B. subtilis and A. brasilense can reduce Cd levels in plants via an IRT1-dependent ABA-mediated mechanism.


Subject(s)
Abscisic Acid/metabolism , Agricultural Inoculants/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Azospirillum brasilense/metabolism , Bacillus subtilis/metabolism , Cadmium/metabolism , Cation Transport Proteins/metabolism , Plant Roots/microbiology , Arabidopsis/growth & development , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Biological Transport , Cation Transport Proteins/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Soil Pollutants/metabolism
6.
Environ Sci Pollut Res Int ; 25(22): 21801-21810, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29796882

ABSTRACT

The retention of aquatic plant debris in freshwater systems favors a reduction in soluble reactive phosphorus (P) in overlying water through microbe-mediated mechanisms in sediment. For a more complete view of the changes in sediment microbial structure and functioning when receiving plant debris, the enzyme activities and microbial community structure in sediments incubated with or without plant debris were investigated. Significantly higher fluorescein diacetate (FDA) hydrolysis, alkaline phosphatase, polyphenol oxidase, cellulase, ß-glucosidase, and dehydrogenase activities were observed with plant debris treatment. High-throughput pyrosequencing showed that the number of total operational taxonomic units (OTUs) of bacteria estimated by using the Chao1 analysis was 2064 (in the control) and 1821 (with the plant debris treatment). The Shannon index, functional organization, and Venn diagrams revealed that the enriched OTUs in plant debris-treated community were less diversified than those in the control sample. The prominent bacterial phyla Firmicutes and Bacteroidetes were more diverse after plant debris addition. At the class level, the relative abundance of Alphaproteobacteria increased by 114% when plant debris was added, whereas the relative abundances of Beta-, Delta-, and Gammaproteobacteria decreased by 42, 78, and 86%, respectively. Azospirillum and Dechloromonas, the dominant phylogenetic groups at the genus level, increased with plant debris addition. Our study showed the importance of the above microbial genera in plant debris-mediated P retention in sediment.


Subject(s)
Enzymes/metabolism , Geologic Sediments/microbiology , Lakes/microbiology , Microbiota , Plants , Aquatic Organisms , Bacteria/genetics , Bacteroidetes/genetics , China , Gammaproteobacteria/genetics , Hydrobiology , Lakes/analysis , Phosphorus/analysis , Phylogeny , RNA, Ribosomal, 16S
7.
Environ Sci Pollut Res Int ; 23(24): 25074-25083, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27677996

ABSTRACT

Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote313s), and resin-coated urea (urea620), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg-1 of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H2O2, and O2·-) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote313s and urea620 showed 103 and 203 % increase in fresh weight and 51-55 % and 44-56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47-238 %) and a decrease in their translocation factor (7.5-21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.


Subject(s)
Brassica/growth & development , Cadmium/analysis , Fertilizers/analysis , Nitrogen/analysis , Soil Pollutants/analysis , Biomass , Brassica/chemistry , Brassica/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Food Safety , Humans , Hydrogen Peroxide/analysis , Oxidative Stress/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...