Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930400

ABSTRACT

This study reveals the relationship between the Cu precipitates and mechanical properties of a Cu-baring ultra-low carbon steel after two-phase zone quenching and tempering at 923 K for 0.5-2.5 h. The tensile and microstructural properties were investigated as a function of heat treatment time. The contribution of the precipitation-strengthening mechanism to yield strength was calculated. The size, morphology, and distribution of the precipitated particles were observed using TEM. As the heat treatment time increased, the strength gradually decreased and then remained stable, and the elongation gradually increased and then remained stable. Additionally, the contributions of each strengthening mechanism to the yield strength under different heat treatments were 117, 107, 102, and 89 MPa, respectively. The size and quantity of the precipitates increased with the increase in heat treatment time. After tempering for more than 2 h, the precipitates continued to coarsen, but their quantity decreased. The precipitated Cu had a 3R structure with a length of approximately 17.1 nm and a width of approximately 9.7 nm, with no twinning inside. The stacking order was ABC/ABC. The stable Cu precipitation structure was FCC, maintaining a K-S orientation relationship 11¯1FCC Cu //(0 1 1) α, 1¯10FCC Cu//[11¯1] α.

2.
Nanomaterials (Basel) ; 13(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903834

ABSTRACT

A medium-carbon low-alloy steel was prepared via the asymmetric rolling process with different ratios of upper and down roll velocities. Subsequently, the microstructure and mechanical properties were explored by using SEM, EBSD, TEM, tensile tests and nanoindentation. The results show that asymmetrical rolling (ASR) can significantly improve strength while retaining good ductility compared with conventional symmetrical rolling. The yield strength and tensile strength of the ASR-steel are 1292 ± 10 MPa and 1357 ± 10 MPa, respectively, which are higher than the values of 1113 ± 10 MPa and 1185 ± 10 MPa for the SR-steel. The ASR-steel retains good ductility of 16.5 ± 0.5%. The significant increase in strength is related to the joint actions of the ultrafine grains, dense dislocations and a large number of nanosized precipitates. This is mainly because of the introduction of extra shear stress on the edge under asymmetric rolling, which induces gradient structural changes hence increasing the density of geometrically necessary dislocations.

3.
ACS Omega ; 6(17): 11173-11182, 2021 May 04.
Article in English | MEDLINE | ID: mdl-34056272

ABSTRACT

With the increase in high gas mines in the low coal rank mining area in the northwestern part of China, high gas mines in the low-rank coal mining area have caused many gas emission accidents. Coal is a porous material, containing a large number of micropores (<2 nm), which can absorb large amounts of methane, so it is necessary to explore methane adsorption in micropores of low-rank coal. In this work, FTIR, HRTEM, and 13C-NMR were used to test the macromolecular structural parameters of Buertai coal, which was a kind of low-rank Jurassic coal in northwestern China. The results showed that the aromatic structural units in the Buertai coal structure mainly consist of naphthalene, anthracene, and phenanthrene. The fat structure mainly occurs in the form of aliphatic side chains, cycloalkanes, and other compounds. The oxygen atoms are present in the form of carbonyl groups, ether bonds, and phenol groups with a ratio of about 6:4:9. The nitrogen atoms are present in the form of pyrrole and pyridine compounds. Finally, the macromolecular structure model of Buertai coal was built, and the calculated NMR spectrum from the model was very consistent with the experimental NMR spectrum of Buertai coal. The relationship between the macromolecular density and energy of Buertai coal was explored using the Amorphous Cell module in the simulation software, Materials Studios 8.0 (MS 8.0), and the density value at the lowest energy was determined to be about 1.23 g/cm3. The pore structure parameters of Buertai coal were also calculated. It was found that both pore volume and void fraction decreased evenly as the diameter of the probe molecule increased, but the surface area decreased rapidly when the diameter of the probe molecule was 3.46 Å. All pore sizes were found to be smaller than 10 Å from the pore size distribution (PSD) curve of Buertai coal, which provided a lot of adsorption sites for methane (CH4). The results of the CH4 adsorption simulation from Grand Canonical Monte Carlo (GCMC) showed that CH4 is adsorbed inside the micropores of coal, and the adsorption capacity of CH4 depends on the diameters of micropores when the micropores are less than 8.5 Å. There are many micropores where CH4 did not appear because these micropores are closed and did not provide a channel for CH4 to enter. The results of experimental methane adsorption indicate that the excess adsorption capacity from the GCMC simulation was very close to the experimental results of Buertai coal. This work provides a new perspective to study the methane adsorption behavior in micropores of coal.

4.
ACS Appl Mater Interfaces ; 13(21): 25002-25009, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34015915

ABSTRACT

Sulfurized polyacrylonitrile (SPAN) is an attractive cathode candidate for the advanced lithium-sulfur (Li-S) batteries owing to its outstanding cyclic stability. Nevertheless, SPAN suffers from inadequate initial Coulombic efficiency (CE) induced by the sluggish reaction kinetics, which is primarily ascribed to the low Li-ion diffusivity and high electronic resistivity of the Li2S product. In this work, an optimal trace amount of soluble lithium polysulfide of Li2S8 is introduced as a redox mediator for a freestanding fibrous SPAN cathode to enhance the reversible oxidation efficiency of Li2S. During the delithiation process, the chemical interactions between Li2S and Li2S8 additive facilitate the electrochemical oxidation of Li2S, resulting in the transformation of not only C-S/S-S bonds in SPAN but also elemental sulfur. Benefiting from the synergistic effect of the two competing reactions, a high initial CE of 82.9% could be achieved at a current density of 200 mA g-1. Moreover, a superior capacity retention along with a high capacity of 1170 mAh g-1 up to the 400th cycle is available at 1000 mA g-1. The study offers a feasible approach for Li-S batteries toward the practical applications of SPAN.

5.
Biomed Rep ; 5(4): 501-505, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27699021

ABSTRACT

Mortality associated with infections due to carbapenem-resistant Klebsiella pneumoniae (CR-KP) is high and the infections need to be predicted early. The risk factors for CR-KP infection are heterogeneous. The aim of the present study was to construct a model allowing for the early prediction of CR-KP infection. Nosocomial infections due to K. pneumoniae were evaluated retrospectively over a 2-year period. The case cohort consisted of 370 inpatients with CR-KP infection. For each case enrolled, two matched controls with no CR-KP infection during their hospitalization were randomly selected. Matching involved month of admission, ward, as well as interval days. The Vitek 2 system was used for identification of isolates and antimicrobial susceptibility testing. General linear model with logistic regression was used to identify possible risk factors. The predicted power of the model was expressed as the area under the receiver-operating characteristic curve. Age, male gender, with cardiovascular disease, hospital stay, recent admission to intensive care unit, indwelling urinary catheter, mechanical ventilation, recent ß-lactam-ß-lactamase inhibitors, fourth-generation cephalosporins and/or carbapenems therapy were independent risk factors for CR-KP infection. Models predicting CR-KP infection developed by cumulative risk factors exhibited good power, with areas under the receiver-operating characteristic curves of 0.902 [95% confidence interval (CI), 0.883-0.920; P<0.001] and 0.899 (95% CI, 0.877-0.921; P<0.001) after filtering by age (≥70 years). The Yonden index was at the maximum when the cumulative risk factors were ≥3 in the two prediction models. The results show that the prediction model developed in the present study might be useful for controlling infections caused by CR-KP strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...