Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(23): 233802, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905673

ABSTRACT

Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects, allowing a wide range of applications. Existing NLOS systems rely on pulsed lasers and time-resolved single-photon detectors to capture the information encoded in the time of flight of scattered photons. Despite remarkable advances, the pulsed time-of-flight LIDAR approach has limited temporal resolution and struggles to detect the frequency-associated information directly. Here, we propose and demonstrate the coherent scheme-frequency-modulated continuous wave calibrated by optical frequency comb-for high-resolution NLOS imaging, velocimetry, and vibrometry. Our comb-calibrated coherent sensor presents a system temporal resolution at subpicosecond and its superior signal-to-noise ratio permits NLOS imaging of complex scenes under strong ambient light. We show the capability of NLOS localization and 3D imaging at submillimeter scale and demonstrate NLOS vibrometry sensing at an accuracy of dozen Hertz. Our approach unlocks the coherent LIDAR techniques for widespread use in imaging science and optical sensing.

2.
Opt Express ; 32(11): 19665-19675, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859096

ABSTRACT

This study demonstrates a differential absorption lidar (DIAL) for CO2 that integrates both single-photon direct detection and coherent detection. Based on all-fiber 1572 nm wavelength devices, this compact lidar achieves detection of CO2 concentration, wind field, and single photon aerosol backscattering signal. First, by comparing DIAL with VAISALA-GMP343, the concentration deviation between the two devices is less than 5 ppm, proving the accuracy of the DIAL. Second, through the scanning detection experiment in Chaohu Lake, Hefei, not only the CO2 concentration between single-photon detection and coherent detection but also the wind field was obtained, proving the multifunctionality and stability of the DIAL. Benefiting from the advantages of combined the two detection methods, single photon detection offers 3-km CO2 and aerosol backscattering signals; coherent detection offers a 360-m shorter blind zone and wind field. This DIAL can achieve monitoring of CO2 flux and sudden emissions, which can effectively compensate for the shortages of in-situ sensors and spaceborne systems.

3.
Opt Express ; 32(7): 11992-12003, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571034

ABSTRACT

Detectors based on single-photon avalanche diodes (SPADs) operating in free-running mode surfer from distorted detection signals due to the impact of afterpulse, dead time, and the non-linear detection efficiency response. This study presents a correction method based on conditional probability. In the experiments with high temporal resolution and huge dynamic range conditions, this method's residual sum of squares is near 68 times smaller than the uncorrected received data of SPAD and near 50 times smaller than deconvolution method. This method is applied to polarization lidar and CO2 lidar, and the performance shows significant improvement. This method effectively mitigates the impact of SPAD afterpulse, dead time, and detection efficiency non-linear response, making it suitable for all SPADs. Especially, our method is primarily employed for atmospheric detection.

4.
Appl Opt ; 63(1): 275-282, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175030

ABSTRACT

The coherent Doppler wind lidar (CDWL) has long been thought to be the most suitable technique for wind remote sensing in the atmospheric boundary layer (ABL) due to its compact size, robust performance, and low-cost properties. However, as the coherent lidar exploits the Mie scattering from aerosol particles, the signal intensity received by the lidar is highly affected by the concentration of aerosols. Unlike air molecules, the concentration of aerosol varies greatly with time and weather, and decreases dramatically with altitude. As a result, the performance of the coherent lidar fluctuates greatly with time, and the detection range is mostly confined within the planetary boundary layer. The original data collected by the lidar are first transformed into a spectrogram and then processed into radial wind velocities utilizing algorithms such as a spectral centroid. When the signal-to-noise ratio (SNR) is low, these classic algorithms fail to retrieve the wind speed stably. In this work, a radial wind velocity retrieving algorithm based on a trained convolutional neural network (CNN) U-Net is proposed for denoising and an accurate estimate of the Doppler shift in a low-SNR regime. The advantage of the CNN is first discussed qualitatively and then proved by means of a numerical simulation. Simulated spectrum data are used for U-Net training and testing, which show that the U-Net is not only more accurate than the spectral centroid but also achieves a further detection range. Finally, joint observation data from the lidar and radiosonde show excellent agreement, demonstrating that the U-Net-based retrieving algorithm has superior performance over the traditional spectral centroid method both in accuracy and detection range.

5.
Opt Express ; 30(13): 23187-23197, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225004

ABSTRACT

For a coaxial single-photon lidar system, amplified spontaneous emission (ASE) noise from the fiber amplifier is inevitable. The ASE backscattering from specular reflection annihilates the far-field weak signal, resulting in low signal-to-noise ratio, short measurement distance, and even misidentification. We propose a method for calibrating and mitigating ASE noise in all-fiber coaxial aerosol lidar and demonstrate the method for a lidar system with different single-photon detectors (SPDs). The accuracy of the coaxial aerosol lidar is comparable to that of the biaxial one. We conducted an experiment using three different detectors, namely, InGaAs/InP SPD, up-conversion SPD, and superconducting nanowire SPD in the same coaxial lidar system. Compared with the biaxial system, the three different detectors we used have achieved more than 90% ASE noise suppression, the measured visibility percent errors of InGaAs/InP SPD data, up-conversion SPD data, and superconducting nanowire SPD data all within 20%, and the percent error within 10% are 99.47%, 100%, and 95.12%, respectively. Moreover, time-sharing optical switching allowed to obtain background noise with high accuracy.

6.
Opt Lett ; 47(13): 3179-3182, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776579

ABSTRACT

Hyperfine wind structure detection is important for aerodynamic and aviation safety. Pulse coherent Doppler wind LIDAR (PCDWL) is a widespread wind remote sensing method with tunable spatial and temporal resolutions. However, meter scale and sub-second resolution are still challenging for PCDWL. This is because of the constraints among short laser pulse duration, spectral broadening, detection accuracy, and real-time processing. In this Letter, to further improve the spatial and temporal resolution of PCDWL, we optimize the optical design of a nanosecond fiber laser and telescope and adopt a new, to the best of our knowledge, algorithm called the even-order derivative peak sharpening technique. During the experiment, all-fiber PCDWL with spatial and temporal resolutions of 3 m and 0.1 s, respectively, is demonstrated. Two-day continuous observation of the wakes of the Chinese high-speed train shows detailed hyperfine wind structures. This is similar to a computational fluid dynamics simulation.

7.
Opt Express ; 29(3): 4431-4441, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33771021

ABSTRACT

We demonstrate a metastable helium Faraday optical filter operating on the 23S1 - 23P1 and 23S1 - 23P2 transition at 1083 nm by using a 3 cm long helium cell. The influence of the magnetic field and gas pressure of the helium cell on the filter characteristics is experimental studied. When the magnetic field is 230 Gs and the gas pressure of helium cell is about 110 Pa, the peak transmission corresponding to the two energy level transitions is about 32% and 57%, respectively. The equivalent noise bandwidth (ENBW) under this working condition is about 1.9 GHz. The metastable helium Faraday filter can be used to improve the optical inefficiency of a helium resonance fluorescence lidar to achieve the metastable helium density detection at 200-1000 km thermosphere.

8.
R Soc Open Sci ; 7(7): 200320, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32874629

ABSTRACT

The ionospheric sporadic E (Es) layer has a significant impact on the global positioning system (GPS)/global navigation satellite system (GNSS) signals. These influences on the GPS/GNSS signals can also be used to study the occurrence and characteristics of the Es layer on a global scale. In this paper, 5.8 million radio occultation (RO) profiles from the FORMOSAT-3/COSMIC satellite mission and ground-based observations of Es layers recorded by 25 ionospheric monitoring stations and held at the UK Solar System Data Centre at the Rutherford Appleton Laboratory and the Chinese Meridian Project were used to derive the hourly Es critical frequency (f o Es) data. The global distribution of f o Es with a high spatial resolution shows a strong seasonal variation in f o Es with a summer maximum exceeding 4.0 MHz and a winter minimum between 2.0 and 2.5 MHz. The GPS/GNSS RO technique is an important tool that can provide global estimates of Es layers, augmenting the limited coverage and low-frequency detection threshold of ground-based instruments. Attention should be paid to small f o Es values from ionosondes near the instrumental detection limits corresponding to minimum frequencies in the range 1.28-1.60 MHz.

9.
Appl Opt ; 59(9): 2686-2694, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32225816

ABSTRACT

Coherent Doppler lidar (CDL) has long been used to automatically identify gust front-induced wind shear signatures from the velocity data, but rare attention has been given to the fine structure of wind gust fronts. In this work, a compact and robust CDL with high efficiency and accuracy is equipped at Lanzhou Airport (103°49$^{\prime}$'E, 36°03$^{\prime}$'N) to conduct interpretation of wind gust front structures by using high-resolution CDL data. Outflows of gust fronts could be detected reliably from radial velocities, spectral widths, as well as radial shears. For the case study presented here, photographs of the velocity and spectrum width capacitates gust front characteristics such as height, advance speed, and radial shear, as well as vertical structure to be displayed in minute detail. Besides, the quasi-continuous vertical wind reveals the potential turbulent mixing and vertical transport process during the gust front event, which makes CDL a very attractive and essential technique for future development of gust front automatic detection systems.

10.
Sci Rep ; 9(1): 17907, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31784684

ABSTRACT

We present a multi-instrument experiment to study the effects of tropospheric thunderstorms on the mesopause region and the lower ionosphere. Sodium (Na) lidar and ionospheric observations by two digital ionospheric sounders are used to study the variation in the neutral metal atoms and metallic ions above thunderstorms. An enhanced ionospheric sporadic E layer with a downward tidal phase is observed followed by a subsequent intensification of neutral Na number density with an increase of 600 cm-3 in the mesosphere. In addition, the Na neutral chemistry and ion-molecule chemistry are considered in a Na chemistry model to simulate the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms. The enhanced Na layer in the simulation obtained by using the ionospheric observation as input is in agreement with the Na lidar observation. We find that the intensification of metallic layered phenomena above thunderstorms is associated with the atmospheric tides, as a result of the troposphere-mesosphere-ionosphere coupling.

11.
Opt Express ; 24(6): A581-91, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136878

ABSTRACT

Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.

12.
Opt Express ; 22(18): 21775-89, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321553

ABSTRACT

Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

13.
Opt Express ; 20(14): 15286-300, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772226

ABSTRACT

A mobile Rayleigh Doppler lidar based on double-edge technique is developed for mid-altitude wind observation. To reduce the systematic error, a system-level optical frequency control method is proposed and demonstrated. The emission of the seed laser at 1064 nm is used to synchronize the FPI in the optical frequency domain. A servo loop stabilizing the frequency of the seed laser is formed by measuring the absolute frequency of the second harmonic against an iodine absorption line. And, the third harmonic is used for Rayleigh lidar detection. The frequency stability is 1.6 MHz at 1064 nm over 2 minutes. A locking accuracy of 0.3 MHz at 1064 nm is realized. In comparison experiments, wind profiles from the lidar, radiosonde and European Center for Medium range Weather Forecast (ECMWF) analysis show good agreement from 8 km to 25 km. Wind observation over two months is carried out in Urumqi (42.1°N, 87.1°E), northwest of China, demonstrating the stability and robustness of the system. For the first time, quasi-zero wind layer and dynamic evolution of high-altitude tropospheric jet are observed based on Rayleigh Doppler lidar in Asia.

SELECTION OF CITATIONS
SEARCH DETAIL
...