Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.925
Filter
1.
J Intensive Care ; 12(1): 35, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294818

ABSTRACT

BACKGROUND: The optimal sedative regime for noninvasive ventilation (NIV) intolerance remains uncertain. The present study aimed to assess the efficacy and safety of remifentanil (REM) compared to dexmedetomidine (DEX) in cardiac surgery patients with moderate-to-severe intolerance to NIV. METHODS: In this multicenter, prospective, single-blind, randomized controlled study, adult cardiac surgery patients with moderate-to-severe intolerance to NIV were enrolled and randomly assigned to be treated with either REM or DEX for sedation. The status of NIV intolerance was evaluated using a four-point NIV intolerance score at different timepoints within a 72-h period. The primary outcome was the mitigation rate of NIV intolerance following sedation. RESULTS: A total of 179 patients were enrolled, with 89 assigned to the REM group and 90 to the DEX group. Baseline characteristics were comparable between the two groups, including NIV intolerance score [3, interquartile range (IQR) 3-3 vs. 3, IQR 3-4, p = 0.180]. The chi-squared test showed that mitigation rate, defined as the proportion of patients who were relieved from their initial intolerance status, was not significant at most timepoints, except for the 15-min timepoint (42% vs. 20%, p = 0.002). However, after considering the time factor, generalized estimating equations showed that the difference was statistically significant, and REM outperformed DEX (odds ratio = 3.31, 95% confidence interval: 1.35-8.12, p = 0.009). Adverse effects, which were not reported in the REM group, were encountered by nine patients in the DEX group, with three instances of bradycardia and six cases of severe hypotension. Secondary outcomes, including NIV failure (5.6% vs. 7.8%, p = 0.564), tracheostomy (1.12% vs. 0%, p = 0.313), ICU LOS (7.7 days, IQR 5.8-12 days vs. 7.0 days, IQR 5-10.6 days, p = 0.219), and in-hospital mortality (1.12% vs. 2.22%, p = 0.567), demonstrated comparability between the two groups. CONCLUSIONS: In summary, our study demonstrated no significant difference between REM and DEX in the percentage of patients who achieved mitigation among cardiac surgery patients with moderate-to-severe NIV intolerance. However, after considering the time factor, REM was significantly superior to DEX. Trial registration ClinicalTrials.gov (NCT04734418), registered on January 22, 2021. URL of the trial registry record: https://register. CLINICALTRIALS: gov/prs/app/action/SelectProtocol?sid=S000AM4S&selectaction=Edit&uid=U00038YX&ts=3&cx=eqn1z0 .

2.
Mol Biol Evol ; 41(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39248185

ABSTRACT

The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.


Subject(s)
Genetic Variation , Selection, Genetic , Evolution, Molecular , Gene Flow , Fagaceae/genetics
3.
Neurosci Bull ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264570

ABSTRACT

Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.

4.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1815-1824, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233410

ABSTRACT

Exploring the physical fractions of organic carbon and influencing mechanisms in grassland, forest, and farmland soils in wind erosion area can provide scientific basis for carbon sequestration, land utilization, wind prevention measure making, and fertility restoration of sloping farmland in the region. We examined the differentiation of aggregate organic carbon and density fractionation organic carbon in 0-15 cm soil layer across grassland, forest, and sloping farmland with 350 m long and 5° slope gradient in the wind erosion area of Meilisi District, Qiqihar, Heilongjiang, as well as the sloping farmland in the downhill section, middle section, and uphill section with every 100 m apart from the bottom to the top. The results showed that soil aggregates >2 mm were all destroyed across grassland, forest, and farmland soils, while the percentage of aggregates <0.053 mm was significantly higher than that of other sizes. The percentage of various soil aggregates, organic carbon content from density fractionations, and the proportion of organic carbon in the heavy fraction aggregates in farmland were significantly lower than that in grassland and forest soils. Soil aggregates in the uphill section of farmland were completely destroyed, and organic carbon content in various size aggregates and density fractionations gradually decreased with increasing slope. The proportion of organic carbon in the heavy fraction aggregates decreased, but that in light fraction aggregates increased gradually. Soil organic carbon and available potassium were key factors affecting aggregate stability, aggregate organic carbon content, and organic carbon content in density fractionations, while the loss of organic carbon in aggregate led to a decrease in aggregate stability. In summary, compared with grassland and forest soils, the stability of soil aggregates, the aggregate organic carbon content, the organic carbon content in density fractionations, and the proportion of organic carbon in heavy fraction aggregates in farmland all decreased in the wind erosion area of Northeast China. With the increases of slope, the aggregate organic carbon content, the organic carbon content in density fractionations, and the proportion of organic carbon in the heavy fraction aggregates in sloping farmland all decreased. Planting trees, conserving and expanding grassland area, and increasing the application of organic materials in sloping farmland in wind erosion area are effective approaches to stabilize and increase carbon storage, improve soil structure, and enhance soil quality.


Subject(s)
Carbon , Organic Chemicals , Soil , Wind , China , Carbon/analysis , Carbon/chemistry , Soil/chemistry , Organic Chemicals/analysis , Crops, Agricultural/growth & development , Grassland , Soil Erosion , Forests , Trees/growth & development , Poaceae/growth & development , Conservation of Natural Resources , Ecosystem
5.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1859-1865, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233415

ABSTRACT

Atmospheric nitrogen (N) deposition could affect the structure and function of terrestrial plants. Non-N2-fixing lichens are used to monitor atmospheric N deposition because they rely on the deposited inorganic N (i.e., ammonium and nitrate) as N sources. However, the uptake capacities of lichen on ammonium and nitrate remain unclear, which hinders the application of lichen N content to accurate bioindication of atmospheric N deposition levels. We investigated ammonium and nitrate uptake capacities of Cladonia rangiferina, which was treated with ammonium alone, nitrate alone, and ammonium and nitrate mixture solutions with different mixing ratios under light and dark conditions. The results showed that N uptake rates increased with ammonium and nitrate concentrations in solutions and generally followed the Michaelis-Menten saturation kinetics. Ammonium uptake of C. rangiferina showed higher values of affinity, and was more efficient than the nitrate uptake. Both rates and amounts of nitrate uptake decreased with increasing ratios of ammonium to nitrate in solutions, while ammonium uptake showed no substantial variations, indicating an inhibition of ammonium on nitrate uptake capability. The darkness significantly decreased the maximum uptake rate and efficiency of nitrate, but had much weaker effects on lichen ammonium uptake. These findings highlight the preference of lichen on ammonium as a key N uptake strategy. It is thus necessary to consider the main types of atmospheric inorganic N deposition when using lichens to monitor atmospheric N pollution levels and evaluate N deposition based on lichen ecophysiology.


Subject(s)
Ammonium Compounds , Lichens , Nitrates , Nitrogen , Nitrates/metabolism , Nitrates/analysis , Nitrogen/metabolism , Lichens/metabolism , Ammonium Compounds/metabolism , Kinetics , Environmental Monitoring/methods , Quaternary Ammonium Compounds/metabolism , Air Pollutants/metabolism , Air Pollutants/analysis
6.
Article in English | MEDLINE | ID: mdl-39287710

ABSTRACT

PURPOSE: Abnormal cell death due to superficial trophoblast dysfunction caused by placental hypoxia plays a vital role in the development of preeclampsia (PE). Lactic acid stimulates gene transcription in chromatin through lactate modification of histone lysine. Nevertheless, the content and function of lactate in PE development remains largely unclear. METHODS: The contents of lactic acid and copper in 30 PE and 30 normal placentas were determined by kit colorimetry. Real-time quantitative fluorescent PCR (qRT-PCR) and Western blot were used to detect the expression of SLC31A1 in cells and tissues. Cell proliferation, apoptosis, and invasion were detected by cell counting kit 8 (CCK-8), MTS assay, colony formation assay, and Transwell assay. The transcriptional regulation between Grhl2 and SLC31A was verified by the luciferase reporter gene method and ChIP. The H3K18la modification level was detected by ChIP-PCR. RESULTS: Herein, we detected increased lactic acid levels in the PE placental tissue, which inhibit the proliferation and invasion of trophoblasts. Interestingly, lactic acid increases intracellular copper content by enhancing the expression of SLC31A1, a key protein of copper ion transporters. Lentivirus knockdown of SLC31A1 blocked the lactate-induced proliferation and invasion of trophoblasts by inhibiting cell cuproptosis. Mechanically, we identified that Grhl2 mediated SLC31A1 expression through transcription and participated in SLC31A1-inhibited proliferation, invasion, and cuproptosis of trophoblasts. Furthermore, the high lactate content increased Grhl2 expression by enhancing lactate modification of histone H3K18 in the Grhl2 promoter region. CONCLUSIONS: Blocking the lactate-regulated Grhl2/SLC31A1 axis and trophoblastic cuproptosis may be a potential approach to prevent and treat PE.

7.
World J Gastrointest Surg ; 16(8): 2640-2648, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220068

ABSTRACT

BACKGROUND: Intussusception occurs in children and progresses rapidly. If not treated in time, it may lead to secondary complications such as intestinal perforation, which affect the quality of life and health of children. Surgery is the most common clinical treatment and has a good effect. However, the postoperative prognosis of children with intussusception has a correlation with the postoperative rehabilitation method. Therefore, in this study, we explored the relationship between postoperative rehabilitation, gastrointestinal function, and the expression of inflammatory factors in children with intussusception. AIM: To explore the relationship between postoperative rehabilitation, gastrointestinal function, and inflammatory factor levels in children with intussusception. METHODS: The medical records of 18 children who were admitted to our hospital for intussusception surgery between October 2022 and May 2024 were retrospectively reviewed. The patients were divided into the routine nursing group (n = 6) and rehabilitation training group (n = 12) according to the postoperative rehabilitation method. The general data, gastrointestinal function, and inflammatory factor levels of the two groups were statistically analyzed. Pearson correlation analysis of gastrointestinal function, inflammatory factors, and postoperative rehabilitation was performed. RESULTS: We found no significant intergroup differences in sex, age, or disease course (P > 0.05). The times to first defecation, bowel sound recovery, and anal exhaust were shorter and inflammatory factor levels were lower in the rehabilitation training group than in the routine nursing group (P < 0.05). Pearson correlation analysis showed that gastrin and motilin levels were positively correlated with postoperative rehabilitation (P < 0.05). Interleukin (IL)-2, IL-4, IL-6, IL-10, high-sensitivity C-reactive protein, and tumor necrosis factor-α levels were negatively correlated with postoperative rehabilitation (P < 0.05). Gastrointestinal function was positively correlated (P < 0.05), and levels of inflammatory factors were negatively correlated with postoperative recovery time (P < 0.05). CONCLUSION: We found a positive correlation between gastrointestinal function and postoperative rehabilitation training, and a negative correlation between inflammatory factor levels and rehabilitation training in children with intussusception.

8.
J Dig Dis ; 25(7): 424-435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39104049

ABSTRACT

OBJECTIVE: We aimed to compare the clinical and endoscopic characteristics of sessile serrated lesions (SSLs) with dysplasia/carcinoma (SSLD/Cs) and SSLs without dysplasia in this systematic review and meta-analysis. METHODS: MEDLINE, EMBASE, and Cochrane Library databases and Clinicaltrials.gov were searched for relevant studies published up to August 28, 2023. The primary outcome was lesion size in SSLD/Cs and SSLs without dysplasia. The secondary outcomes included risk of dysplasia/carcinoma, morphology (classified based on the Paris classification), and lesion features such as mucus cap and nodules/protrusions in the two groups. RESULTS: Thirteen studies with 14 381 patients were included. The proportion of SSLD/Cs ≥10 mm was significantly higher than that of SSLs without dysplasia (odds ratio [OR] 3.82, 95% confidence interval [CI] 1.21-12.02, p = 0.02). There was no significant difference in the risk of dysplasia/carcinoma between the proximal (OR 0.80, 95% CI 0.57-1.14) and distal colon (OR 1.25, 95% CI 0.88-1.77, p = 0.21). The 0-Ip (OR 2.47, 95% CI 1.50-4.09) and 0-IIa + Is (OR 10.38, 95% CI 3.08-34.98) morphologies were more prevalent among SSLD/Cs, whereas the 0-IIa morphology (OR 0.38, 95% CI 0.22-0.65) was more prevalent among SSLs without dysplasia (all p < 0.001). Furthermore, mucus cap (OR 0.61, 95% CI 0.42-0.89, p = 0.01) was more common among SSLs without dysplasia, whereas nodules/protrusions (OR 7.80, 95% CI 3.07-19.85, p < 0.001) were more common in SSLD/Cs. CONCLUSION: SSLs >10 mm, 0-Ip or 0-IIa + Is morphologies, and those with nodules/protrusions are significantly associated with dysplasia/carcinoma.


Subject(s)
Colonic Polyps , Colonoscopy , Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colonic Polyps/pathology , Carcinoma/pathology , Female
9.
BMC Infect Dis ; 24(1): 830, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148030

ABSTRACT

BACKGROUND AND AIMS: Data on the safety and effectiveness of tenofovir alafenamide (TAF) plus peginterferon-alpha (Peg-IFN-α) in children with chronic hepatitis B (CHB) are lacking. The current study aimed to present the characteristics of four pediatric CHB patients who obtained a functional cure by using TAF and Peg-IFN-α. METHODS: In this case series study initiated in May 2019, ten children who had no clinical symptoms or signs received response-guided (HBV DNA undetectable, hepatitis B e antigen [HBeAg] loss or seroconversion, and hepatitis B surface antigen [HBsAg] loss or seroconversion) and functional cure-targeted (HBsAg loss or seroconversion) TAF (25 mg/d, orally) plus Peg-IFN-α-2b (180 µg/1.73m2, subcutaneously, once weekly) in combination (9/10) or sequential (1/10) therapy. The safety and effectiveness of these treatments were monitored. RESULTS: As of April 2024, four out of ten children obtained a functional cure after a mean of 31.5 months of treatment, and the other six children are still undergoing treatment. These four cured children, aged 2, 4, 8, and 6 years, were all HBeAg-positive and had alanine aminotransferase levels of 80, 47, 114, and 40 U/L; HBV DNA levels of 71200000, 93000000, 8220, and 96700000 IU/mL; and HBsAg levels of 39442.8, 15431.2, 22, and 33013.1 IU/mL, respectively. During treatment, all the children (10/10) experienced mild or moderate adverse events, including flu-like symptoms, anorexia, fatigue, and cytopenia. Notably, growth retardation (8/10) was the most significant adverse event; and it occurred in three cured children (3/4) treated with combination therapy and was present to a low degree in the other cured child (1/4) treated with sequential therapy. Fortunately, all three cured children recovered to or exceeded the normal growth levels at 9 months posttreatment. CONCLUSIONS: TAF plus Peg-IFN-α-2b therapy is potentially safe and effective for pediatric CHB patients, which may provide important insights for future clinical practice and study designs targeting functional cures for children with CHB.


Subject(s)
Antiviral Agents , Drug Therapy, Combination , Hepatitis B, Chronic , Interferon-alpha , Polyethylene Glycols , Recombinant Proteins , Tenofovir , Humans , Tenofovir/therapeutic use , Tenofovir/administration & dosage , Tenofovir/analogs & derivatives , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Male , Female , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/administration & dosage , Child , Recombinant Proteins/therapeutic use , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Polyethylene Glycols/therapeutic use , Polyethylene Glycols/adverse effects , Polyethylene Glycols/administration & dosage , Interferon-alpha/therapeutic use , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Child, Preschool , Treatment Outcome , Interferon alpha-2/therapeutic use , Interferon alpha-2/administration & dosage , Hepatitis B Surface Antigens/blood , Hepatitis B e Antigens/blood , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , DNA, Viral/blood , Alanine/therapeutic use , Alanine/analogs & derivatives
10.
Front Microbiol ; 15: 1438827, 2024.
Article in English | MEDLINE | ID: mdl-39144220

ABSTRACT

Introduction: Data on the management of patients aged more than 85 years with chronic hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequential infections are lacking. Methods: The current study described the management of an older couple aged more than 85 years with these above-mentioned two diseases treated with 12 weeks of sofosbuvir/velpatasvir (Epclusa®) and 5 days of nirmatrelvir/ritonavir (Paxlovid®) sequentially. The effectiveness and safety profiles were closely monitored during therapy and till 9 months posttreatment. Results: In late March 2023, the husband with the main complaint of repeated gingival bleeding and asymptomatic wife were 86 and 85 years old, and had HCV RNA levels of 91,800 and 6,630,000 IU/mL, respectively. On the fourth day of sofosbuvir/velpatasvir treatment, the husband had a moderate headache, and the wife had severe headache and moderate fever and dizziness. We then found that their SARS-CoV-2 test results were positive. After careful consideration, the expert panel decided to treat the couple with oral nirmatrelvir/ritonavir (300 mg/100 mg, twice daily) beginning on the fifth day of sofosbuvir/velpatasvir treatment for 5 days. During the 5 days of nirmatrelvir/ritonavir treatment, the patient's symptoms and signs gradually improved, and the patient was negative for SARS-CoV-2 RNA on the fifth day of nirmatrelvir/ritonavir therapy. Meanwhile, the husband's HCV RNA was not detectable after one week of sofosbuvir/velpatasvir treatment till posttreatment month 9, and his ALT level was normal beginning at week 1 of sofosbuvir/velpatasvir treatment. Moreover, the wife's HCV RNA was not detectable after week 4 of sofosbuvir/velpatasvir treatment till posttreatment month 9. Notably, no other symptoms or signs occurred during the treatment or follow-up period, and other serum biochemical parameters remained stable until 9 months after the discontinuation of sofosbuvir/velpatasvir treatment. Conclusion: The older couple aged more than 85 years with chronic HCV and SARS-CoV-2 sequential infection were safely cured by the sofosbuvir/velpatasvir and nirmatrelvir/ritonavir sequential treatment. Discussion: This study suggested that old age should not be a barrier to HCV/SARS-CoV-2 treatment. Given that the proportion of older HCV-infected patients is increasing, clinical trials of direct-acting antiviral agents should include older HCV-infected individuals.

11.
Drug Test Anal ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152891

ABSTRACT

The effective implementation of drug precursor legislation has driven the innovation and design of new alternative substances. The application of 1,3-dicarbonyl precursors as alternative precursors for the synthesis of 1-phenyl-2-propanone (P2P) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) has created new challenges to legal control. Their 1,3-dicarbonyl structure allows the precursors to exist as an equilibrium mixture of the tautomeric diketo and keto-enolic forms during the nuclear magnetic resonance (NMR) analysis. In this study, the keto-enol tautomerism of four 1,3-dicarbonyl drug pre-precursors, α-phenylacetoacetamide (APAA), methyl α-phenylacetoacetate (MAPA), ethyl α-phenylacetoacetate (EAPA), and methyl 2-(benzo[d][1,3]dioxol-5-yl)-3-oxobutanoate (MAMDPA) were investigated through NMR. One-dimensional (1D) and 2D NMR were combined to assign signals for the diketo and keto-enolic tautomers. Results showed that the keto-enol tautomerism was solvent-dependent but was also influenced by the substituent present in the molecule. Further, the analysis results indicated that majority of substances existed mainly in the diketo form. The enol-keto equilibrium constant (Keq) was stable in dimethyl sulfoxide-d6 and chloroform-d, while unstable for some compounds in acetone-d6 and deuterated methanol. The presence of impurities in the seized sample may disrupt the equilibrium between keto-enol tautomers in 1,3-dicarbonyl precursors. After the optimization of several key quantitative parameters, a quantitative NMR method for the quantification of 1,3-dicarbonyl drug precursors were also developed to facilitate their quantitative analysis. This is the first study to investigate the keto-enol tautomerism and quantification of 1,3-dicarbonyl drug precursors by NMR, providing a new approach for structure analysis and quantification of new precursor analogues.

12.
Phys Rev Lett ; 133(3): 036003, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094159

ABSTRACT

This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films. The system manifests isotropic SMT features under both in-plane and perpendicular magnetic fields. Importantly, after scaling analysis of the isothermal magnetoresistance curves, the obtained effective dynamic critical exponents demonstrate divergent behavior when approaching the zero-temperature critical point B_{c}^{*}, identifying the QGS characteristics. Moreover, the quantum fluctuation associated with the QGS can quantitatively explain the upturn of the upper critical field around zero temperature for both the in-plane and perpendicular magnetic fields in the phase boundary of SMT. These properties indicate that the QGS in the Nd_{0.8}Sr_{0.2}NiO_{2} superconducting thin film is isotropic. Moreover, a higher magnetic field gives rise to a metallic state with the resistance-temperature relation R(T) exhibiting lnT dependence among the 2-10 K range and T^{2} dependence of resistance below 1.5 K, which is significant evidence of Kondo scattering. The interplay between isotropic QGS and Kondo scattering in the unconventional Nd_{0.8}Sr_{0.2}NiO_{2} superconductor can illustrate the important role of rare region in QGS and help to uncover the exotic superconductivity mechanism in this system.

13.
J Agric Food Chem ; 72(32): 17762-17770, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39093601

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , Herbicides/toxicity , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Humans , Animals , Enzyme Inhibitors/toxicity , Plants/drug effects
14.
J Neurochem ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092633

ABSTRACT

Orexin is exclusively produced in neurons localized within the lateral hypothalamic area (LHA) and perifornical area (PFA). Orexin has been identified as a key promotor of arousal. The selective loss of orexinergic neurons results in narcolepsy. It is known that the intrinsic electrophysiological properties are critical for neurons to perform their functions in corresponding brain regions. In addition to hypothalamic orexin, other brain nuclei are involved in the regulation of sleep and wakefulness. Quite a lot of studies focus on elucidating orexin-induced regulation of sleep-wake states and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that the orexinergic neurons exhibit spontaneous firing activity which is associated with the states of sleep-wake cycle. Orexin mainly exerts postsynaptic excitatory effects on multiple brain nuclei associated with the process of sleep and wakefulness. This review may provide a background to guide future research about the cellular mechanisms of orexin-induced maintaining of arousal.

15.
Ecotoxicol Environ Saf ; 284: 116934, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182285

ABSTRACT

As the negative repercussions of environmental devastation, such as air quality decline and air pollution, become more apparent, environmental consciousness is growing across the world, forcing nations to take steps to mitigate the damage. China pledged to achieve air quality improvement goal to combat global environment issue, yet the spatial-temporal differentiation and its driving factors of environment-meteorology-economic index for air quality are not fully analysed. To promote regional collaborative control of air pollution and achieve sustainable urban development, spatial and temporal different and its driving factors of air quality in Shandong Province during 2013-2020. Results revealed that concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), and carbon monoxide (CO-95per) exhibited decreasing trend (SO2 concentrations decreasing 84 % and CO-95per concentrations decreasing 90 %). Air quality was improved from inland areas to coastal areas. Pollutant indicators of SO2, NO2, PM10, PM2.5, and CO-95per demonstrated significant positive correlation (P < 0.05). Air temperature and precipitation are significantly negatively correlated with concentrations of SO2, NO2, PM10, PM2.5, and CO-95per but significantly positively correlated with ozone (O3-8 h). SO2, NO2, PM2.5, PM10, CO-95per, and proportion of days with heavy pollution are strongly positively correlated with proportion of secondary industry but strongly negatively correlated with proportion of tertiary industry and volume of household waste. Except for O3-8 h, pollutant index of Provincial Capital Economic Circle (PCEC) and Southern Shandong Economic Circle (SSEC) has significant negative correlation (P < 0.05) with regional gross domestic product and investment in environmental protection; however, investment in environmental protection of Eastern Shandong Economic Circle (ESEC) has no significant correlation with air pollution index. There was significant negative correlation between vegetable sowing area and SSEC pollutant index. The relationship between pollution emission and investment in environmental protection has shifted from high pollution-low investment to low pollution-low investment in PCEC, ESEC and SSEC, and the inflection point was in 2020 for PCEC, 2019 for ESEC, and 2020 for SSEC. Those results provide empirical evidence and theoretical support for the improvement of regional air quality, aiming to achieve high-quality development. According to these findings, it has been found that meteorological elements, pollutant emission, socio-economic factors and agricultural data affect air quality. Those results could provide meaningful and significant supporting for synergistic regulation of diverse pollutants.

16.
Adv Mater ; : e2409489, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210646

ABSTRACT

Solid-state polymer lithium metal batteries are an important strategy for achieving high safety and high energy density. However, the issue of Li dendrites and inherent inferior interface greatly restricts practical application. Herein, this study introduces tris(2,2,2-trifluoroethyl)phosphate solvent with moderate solvation ability, which can not only complex with Li+ to promote the in-situ ring-opening polymerization of 1,3-dioxolane (DOL), but also build solvated structure models to explore the effect of different solvation structures in the polymer electrolyte. Thereinto, it is dominated by the contact ion pair solvated structure with pDOL chain segments forming less lithium bonds, exhibiting faster kinetic process and constructing a robust anion-derived inorganic-rich interphase, which significantly improves the utilization rate of active Li and the high-voltage resistance of pDOL. As a result, it exhibits stable cycling at ultra-high areal capacity of 20 mAh cm-2 in half cells, and an ultra-long lifetime of over 2000 h in symmetric cells can be realized. Furthermore, matched with LiNi0.9Co0.05Mn0.05O2 cathode, the capacity retention after 60 cycles is as high as 96.8% at N/P value of 3.33. Remarkably, 0.7 Ah Li||LiNi0.9Co0.05Mn0.05O2 pouch cell with an energy density of 461 Wh kg-1 can be stably cycled for five cycles at 100% depth of discharge.

17.
medRxiv ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39211872

ABSTRACT

Objective: The lungs of patients with Systemic Sclerosis Associated Interstitial Lung Disease (SSc-ILD) contain inflammatory myofibroblasts arising in association with fibrotic stimuli and perturbed innate immunity. The innate immune DNA binding receptor Cyclic GMP-AMP synthase (cGAS) is implicated in inflammation and fibrosis, but its involvement in SSc-ILD remains unknown. We examined cGAS expression, activity, and therapeutic potential in SSc-ILD using cultured fibroblasts, precision cut lung slices (PCLS), and a well-accepted animal model. Methods: Expression and localization of cGAS, cytokines, and type 1 interferons were evaluated in SSc-ILD lung tissues, bronchoalveolar lavage (BAL), and isolated lung fibroblasts. CGAS activation was assessed in a publicly available SSc-ILD single cell RNA sequencing dataset. Production of cytokines, type 1 interferons, and αSMA elicited by TGFß1 or local substrate stiffness were measured in normal human lung fibroblasts (NHLFs) via qRT-PCR, ELISA, and immunofluorescence. Small molecule cGAS inhibition was tested in cultured fibroblasts, human PCLS, and the bleomycin pulmonary fibrosis model. Results: SSc-ILD lung tissue and BAL are enriched for cGAS, cytokines, and type 1 interferons. The cGAS pathway shows constitutive activation in SSc-ILD fibroblasts and is inducible in NHLFs by TGFß1 or mechanical stimuli. In these settings, and in human PCLS, cGAS expression is paralleled by the production of cytokines, type 1 interferons, and αSMA that are mitigated by a small molecule cGAS inhibitor. These findings are recapitulated in the bleomycin mouse model. Conclusion: cGAS signaling contributes to pathogenic inflammatory myofibroblast phenotypes in SSc-ILD. Inhibiting cGAS or its downstream effectors represents a novel therapeutic approach.

18.
Article in English | MEDLINE | ID: mdl-39189851

ABSTRACT

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease for which current treatment options only slow clinical progression. Previously, we identified a subset of patients with IPF with an accelerated disease course associated with fibroblast expression of Toll-Like Receptor 9 (TLR9) mediated by interactions with its ligand mitochondrial DNA (mtDNA). OBJECTIVES: We aimed to show that TLR9 activation induces fibroproliferative responses that are abrogated by its antagonism by using two commercially-available indirect inhibitors and a proprietary, selective direct small molecule inhibitor. METHODS: We employed two independent cohorts of patients with IPF, multiple in vitro fibroblast cell culture platforms, an in vivo mouse model, and an ex vivo human precision cut lung slices system to investigate the clinical and biologic significance of TLR9 in this disease. MEASUREMENTS AND MAIN RESULTS: In two independent IPF cohorts, plasma mtDNA activates TLR9 in a manner associated with the expression of MCP-1, IL-6, TNFα, and IP-10 and worsened transplant-free survival. Our cell culture platform showed that TLR9 mediates fibroblast activation via TGFß1 and stiff substrates, and that its antagonism, particularly direct inhibition, ameliorates this process, including production of these TLR9 associated pharmacodynamic endpoints. We further demonstrated that direct TLR9 inhibition mitigates these fibroproliferative responses in our in vivo and ex vivo models of pulmonary fibrosis. CONCLUSIONS: In this novel study, we found that direct TLR9 inhibition mitigates fibroproliferative responses in preclinical models of pulmonary fibrosis. Our work demonstrates the therapeutic potential of direct TLR9 antagonism in IPF and related fibrotic lung diseases.

19.
Front Biosci (Landmark Ed) ; 29(8): 303, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39206918

ABSTRACT

BACKGROUND: Rheumatic heart disease (RHD) is an autoimmune disease caused by recurrent infections of Group A streptococcus (GAS), ultimately leading to inflammation and the fibrosis of heart valves. Recent studies have highlighted the crucial role of C-C chemokine receptor type 2-positive (CCR2+) macrophages in autoimmune diseases and tissue fibrosis. However, the specific involvement of CCR2+ macrophages in RHD remains unclear. METHODS: This study established an RHD rat model using inactivated GAS and complete Freund's adjuvant, demonstrating a correlation between CCR2+ macrophages and fibrosis in the mitral valves of these rats. RESULTS: Intraperitoneal injection of the CCR2 antagonist Rs-504393 significantly reduced macrophage infiltration, inflammation, and fibrosis in valve tissues of RHD rats compared to the solvent-treated group . Existing evidence suggests that C-C motif chemokine ligand 2 (CCL2) acts as the primary recruiting factor for CCR2+ cells. To validate this, human monocytic leukemia cells (THP-1) were cultured in vitro to assess the impact of recombinant CCL2 protein on macrophages. CCL2 exhibited pro-inflammatory effects similar to lipopolysaccharide (LPS), promoting M1 polarization in macrophages. Moreover, the combined effect of LPS and CCL2 was more potent than either alone. Knocking down CCR2 expression in THP-1 cells using small interfering RNA suppressed the pro-inflammatory response and M1 polarization induced by CCL2. CONCLUSIONS: The findings from this study indicate that CCR2+ macrophages are pivotal in the valvular remodeling process of RHD. Targeting the CCL2/CCR2 signaling pathway may therefore represent a promising therapeutic strategy to alleviate valve fibrosis in RHD.


Subject(s)
Inflammation , Macrophages , Receptors, CCR2 , Rheumatic Heart Disease , Animals , Humans , Male , Rats , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Disease Models, Animal , Eicosapentaenoic Acid/analogs & derivatives , Fibrosis , Heart Valves/pathology , Inflammation/metabolism , Macrophages/metabolism , Macrophages/immunology , Rats, Inbred Lew , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Rheumatic Heart Disease/immunology , Rheumatic Heart Disease/microbiology , Rheumatic Heart Disease/metabolism , Rheumatic Heart Disease/pathology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Streptococcus pyogenes , THP-1 Cells
20.
Nat Commun ; 15(1): 6407, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079989

ABSTRACT

Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.


Subject(s)
Ecosystem , Nitrates , Nitrogen , Plants , Soil , Temperature , Soil/chemistry , Nitrogen/metabolism , Nitrogen/analysis , Plants/metabolism , Nitrates/metabolism , Nitrates/analysis , Ammonium Compounds/metabolism , Ammonium Compounds/analysis , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL