Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Cell Biochem ; 424(1-2): 57-67, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27734226

ABSTRACT

C1ql-like (C1QL)-1 and -4 proteins are encoded by homologous genes that are highly expressed in brain and adipose tissues. However, functional properties of C1QL proteins outside of the brain and adipocytes remain unknown. Here, we report that the globular domain of C1ql1/Ctrp14 and C1ql4/Ctrp11 proteins directly stimulate the angiogenesis of endothelial cells. In this study, soluble C1ql1/CTRP14 and C1ql4/Ctrp11 proteins, produced in prokaryote expression system, are co-cultured with human umbilical vein endothelium cells (HUVECs), which phenotype is identified with von Willebrand factor antibody. C1ql1/Ctrp14 and C1ql4/Ctrp11 promote the migration and capillary tube formation of HUVECs in a dose-dependent manner. During this process, phosphorylation of c-Raf, MEK1/2, ERK1/2, and p90RSK are activated by C1ql1/Ctrp14 and C1ql4/Ctrp11. MEK1/2 inhibitor, U0126, blocks C1ql1/Ctrp14-, and C1ql4/Ctrp11-induced capillary tube formation and cell migration. Moreover, the immunoreactivity of the receptor of C1QL1-C1QL4, brain-specific angiogenesis inhibitor 3 (BAI3), is detected in HUVECs, suggesting that BAI3 may mediate C1QL1/CTRP14- and C1QL4/CTRP11-induced angiogenesis. Meanwhile, C1ql1/Ctrp14 and C1ql4/Ctrp11 exposure also causes a stimulatory response of angiogenesis in chick yolk sac membrane. These data demonstrate that C1ql1/Ctrp14 and C1ql4/Ctrp11 stimulate the new blood vessel growth by activation of ERK1/2 signal pathway. The proangiogenic activity of C1ql1/Ctrp14 and C1ql4/Ctrp11 provides novel insights into the new opportunities for therapeutic intervention by targeting C1QLs in tumorigenesis, tissue regeneration, and recovery of ischemic heart disease.


Subject(s)
Complement C1q/pharmacology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neovascularization, Physiologic/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Nerve Tissue Proteins/metabolism , Protein Domains
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 34(9): 1359-64, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25263376

ABSTRACT

OBJECTIVE: To analyze the effect of small interfering RNA (siRNA) targeting mouse epididymis-specific colipase-like (meClps) gene on mouse sperm mobility. METHODS: The eukaryotic expression vector pDsRed2.0-C1-meClps was constructed and transfected into NIH-3T3 cells, and the protein expression was detected with anti-meClps serum. Three interfering sequences targeting meClps (RNAi-251, 224 and 286) were inserted into lentiviral vectors pRNAT-U6.2/lenti, which were co-transfected with pDsRed2.0-C1-meClps into NIH-3T3 cells. The RNA interfering efficiency was confirmed by semi-quantitative PCR and Western blotting. The lentivirus, packed with the lentiviral vector with the highest interfering efficiency, was injected into the caput tissues of mouse epididymis, and its effect on sperm mobility of the cauda epididymis was evaluated. RESULTS: All the 3 lentiviral RNAi vectors targeting meClps could inhibit the mRNA and protein expressions of meClps, among which pRNAT-U6.2/lenti-RNAi-251 had the highest interfering efficiency. The lentivirus packed with pRNAT-U6.2/lenti-RNAi-251 significantly reduced the path velocity of cauda sperm after injection into the caput epididymis of the mice (P<0.05). CONCLUSION: Knock-down meClps expression by lentiviral-mediated RNA interference can lower sperm mobility of mice.


Subject(s)
Epididymis , RNA Interference , Sperm Motility , Animals , Gene Targeting , Genetic Vectors , Lentivirus , Male , Mice , NIH 3T3 Cells , RNA, Messenger , RNA, Small Interfering , Spermatozoa , Transfection
3.
Proc Natl Acad Sci U S A ; 108(7): 2807-12, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21282641

ABSTRACT

The vasculature of the CNS is structurally and functionally distinct from that of other organ systems and is particularly prone to developmental abnormalities and hemorrhage. Although other embryonic tissues undergo primary vascularization, the developing nervous system is unique in that it is secondarily vascularized by sprouting angiogenesis from a surrounding perineural plexus. This sprouting angiogenesis requires the TGF-ß and Wnt pathways because ablation of these pathways results in aberrant sprouting and hemorrhage. We have genetically deleted Gpr124, a member of the large family of long N-terminal group B G protein-coupled receptors, few members of which have identified ligands or well-defined biologic functions in mammals. We show that, in the developing CNS, Gpr124 is specifically expressed in the vasculature and is absolutely required for proper angiogenic sprouting into the developing neural tube. Embryos lacking Gpr124 exhibit vascular defects characterized by delayed vascular penetration, formation of pathological glomeruloid tufts within the CNS, and hemorrhage. In addition, they display defects in palate and lung development, two processes in which TGF-ß and/or Wnt pathways also play important roles. We also show that TGF-ß stimulates Gpr124 expression, and ablation of Gpr124 results in perturbed TGF-ß pathway activation, suggesting roles for Gpr124 in modulating TGF-ß signaling. These results represent a unique function attributed to a long N-terminal group B-type G protein-coupled receptor in a mammalian system.


Subject(s)
Central Nervous System/blood supply , Central Nervous System/embryology , Neovascularization, Physiologic/physiology , Receptors, G-Protein-Coupled/metabolism , Animals , Embryo, Mammalian , Genetic Engineering , Histological Techniques , Immunohistochemistry , In Situ Hybridization , Lung/embryology , Lung/metabolism , Mice , Microarray Analysis , Palate/embryology , Palate/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/physiology , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism
4.
Methods Enzymol ; 476: 295-307, 2010.
Article in English | MEDLINE | ID: mdl-20691873

ABSTRACT

Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction (qPCR) as our method of allele quantification, but any method that can reliably distinguish the difference between one and two copies of the target gene can be used to develop an LOA assay. We have designed qPCR LOA assays for deletions, insertions, point mutations, domain swaps, conditional, and humanized alleles and have used the insert assays to quantify the copy number of random insertion BAC transgenics. Because of its quantitative precision, specificity, and compatibility with high throughput robotic operations, the LOA assay eliminates bottlenecks in ES cell screening and mouse genotyping and facilitates maximal speed and throughput for knockout mouse production.


Subject(s)
Biological Assay/methods , Embryonic Stem Cells/physiology , Gene Targeting/methods , Genotype , Loss of Heterozygosity , Animals , Biological Assay/instrumentation , Embryonic Stem Cells/cytology , Humans , Mice , Mice, Knockout , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods
5.
J Biol Chem ; 282(48): 35405-15, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-17921143

ABSTRACT

Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 3/chemistry , Receptors, Somatotropin/metabolism , Animals , Catalytic Domain , Cell Proliferation , Female , Humans , Liver/metabolism , Male , Mice , Mice, Knockout , Models, Biological , Mutation , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 3/physiology , RNA, Messenger/metabolism , Signal Transduction
6.
Science ; 316(5824): 604-8, 2007 Apr 27.
Article in English | MEDLINE | ID: mdl-17463289

ABSTRACT

MicroRNAs are small RNA species involved in biological control at multiple levels. Using genetic deletion and transgenic approaches, we show that the evolutionarily conserved microRNA-155 (miR-155) has an important role in the mammalian immune system, specifically in regulating T helper cell differentiation and the germinal center reaction to produce an optimal T cell-dependent antibody response. miR-155 exerts this control, at least in part, by regulating cytokine production. These results also suggest that individual microRNAs can exert critical control over mammalian differentiation processes in vivo.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , MicroRNAs/physiology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cells, Cultured , Cytokines/biosynthesis , Immunoglobulin G/analysis , Lymphocyte Activation , Lymphotoxin-alpha/biosynthesis , Lymphotoxin-beta/biosynthesis , Mice , Mice, Knockout , Mice, Transgenic , MicroRNAs/genetics , Nitrophenols/immunology , Peyer's Patches/immunology , Phenylacetates , Somatic Hypermutation, Immunoglobulin , Spleen/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th2 Cells/cytology , Th2 Cells/immunology , Tumor Necrosis Factor-alpha/biosynthesis
7.
Blood ; 104(10): 3097-105, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15251982

ABSTRACT

Notch1 is known to play a critical role in regulating fates in numerous cell types, including those of the hematopoietic lineage. Multiple defects exhibited by Notch1-deficient embryos confound the determination of Notch1 function in early hematopoietic development in vivo. To overcome this limitation, we examined the developmental potential of Notch1(-/-) embryonic stem (ES) cells by in vitro differentiation and by in vivo chimera analysis. Notch1 was found to affect primitive erythropoiesis differentially during ES cell differentiation and in vivo, and this result reflected an important difference in the regulation of Notch1 expression during ES cell differentiation relative to the developing mouse embryo. Notch1 was dispensable for the onset of definitive hematopoiesis both in vitro and in vivo in that Notch1(-/-) definitive progenitors could be detected in differentiating ES cells as well as in the yolk sac and early fetal liver of chimeric mice. Despite the fact that Notch1(-/-) cells can give rise to multiple types of definitive progenitors in early development, Notch1(-/-) cells failed to contribute to long-term definitive hematopoiesis past the early fetal liver stage in the context of a wild-type environment in chimeric mice. Thus, Notch1 is required, in a cell-autonomous manner, for the establishment of long-term, definitive hematopoietic stem cells (HSCs).


Subject(s)
Gene Expression Regulation, Developmental , Hematopoiesis/physiology , Hematopoietic Stem Cells/physiology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Differentiation/physiology , Cell Division/physiology , Hematopoietic Stem Cells/cytology , Lac Operon , Liver/cytology , Liver/embryology , Mesoderm/cytology , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Receptor, Notch1 , Vascular Endothelial Growth Factor Receptor-2/metabolism , Yolk Sac/cytology , Yolk Sac/embryology
8.
Genesis ; 37(3): 139-43, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14595837

ABSTRACT

The Notch signaling pathway is an evolutionarily conserved signaling mechanism and mutations in its components disrupt cell fate specification and embryonic development in many organisms. To analyze the in vivo role of the Notch3 gene in mice, we created a deletion allele by gene targeting. Embryos homozygous for this mutation developed normally and homozygous mutant adults were viable and fertile. We also examined whether we could detect genetic interactions during early embryogenesis between the Notch3 mutation and a targeted mutation of the Notch1 gene. Double homozygous mutant embryos exhibited defects normally observed in Notch1-deficient embryos, but we detected no obvious synergistic effects in the double mutants. These data demonstrate that the Notch3 gene is not essential for embryonic development or fertility in mice, and does not have a redundant function with the Notch1 gene during early embryogenesis.


Subject(s)
Embryonic and Fetal Development/genetics , Gene Deletion , Gene Expression Regulation, Developmental , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/pharmacology , Receptors, Cell Surface/genetics , Transcription Factors , Animals , Female , Fertility/genetics , Genetic Vectors , Male , Mice/embryology , Mutation , Receptor, Notch1 , Receptor, Notch3 , Receptor, Notch4 , Receptors, Cell Surface/physiology , Receptors, Notch , Signal Transduction
9.
J Biol Chem ; 278(36): 34380-6, 2003 Sep 05.
Article in English | MEDLINE | ID: mdl-12788949

ABSTRACT

Myotubularins (MTMs) constitute a large family of lipid phosphatases that specifically dephosphorylate phosphatidylinositol (3)P. MTM1 and MTM2 are mutated in X-linked myotubular myopathy and Charcot-Marie-Tooth disease (type 4B), respectively, although the mechanisms whereby MTM dysfunction leads to these diseases is unknown. To gain insight into MTM function, we undertook the study of MTMs in the nematode Caenorhabditis elegans, which possesses representative homologues of the four major subgroups of MTMs identified in mammals. As in mammals, we found that C. elegans MTMs mediate distinct functions. let-512 (vps34) encodes the C. elegans homologue of the yeast and mammalian homologue of the phosphatidylinositol 3-kinase Vps34. We found that reduction of mtm-6 (F53A2.8) function by RNA inhibition rescued the larval lethality of let-512 (vps34) mutants and that the reduction of mtm-1 (Y110A7A.5) activity by RNA inhibition rescued the endocytosis defect of let-512 animals. Together, these observations provide genetic evidence that MTMs negatively regulate phosphatidylinositol (3)P levels. Analysis of MTM expression patterns using transcriptional green fluorescence protein reporters demonstrated that these two MTMs exhibit mostly non-overlapping expression patterns and that MTM-green fluorescence protein fusion proteins are localized to different subcellular locations. These observations suggest that some of the different functions of MTMs might, in part, be a consequence of unique expression and localization patterns. However, our finding that at least three C. elegans MTMs play essential roles in coelomocyte endocytosis, a process that also requires VPS34, indicates that MTMs do not simply turn off VPS34 but unexpectedly also function as positive regulators of biological processes.


Subject(s)
Caenorhabditis elegans/genetics , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/genetics , Animals , Animals, Genetically Modified , Endocytosis , Green Fluorescent Proteins , Luminescent Proteins/metabolism , Mutation , Phosphatidylinositol 3-Kinases/chemistry , Phosphorylation , Phylogeny , Protein Tyrosine Phosphatases, Non-Receptor , RNA/metabolism , RNA Interference , Recombinant Fusion Proteins/metabolism , Transcription, Genetic
10.
Nat Biotechnol ; 21(6): 652-9, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12730667

ABSTRACT

One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive-negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5-1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Gene Expression Profiling/methods , Genetic Engineering/methods , Genome , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Electroporation/methods , Gene Targeting/methods , Mice/genetics , Mutagenesis, Insertional/methods , Mutagenesis, Site-Directed , Quality Control , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...