Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732391

ABSTRACT

Tomato leaf disease control in the field of smart agriculture urgently requires attention and reinforcement. This paper proposes a method called LAFANet for image-text retrieval, which integrates image and text information for joint analysis of multimodal data, helping agricultural practitioners to provide more comprehensive and in-depth diagnostic evidence to ensure the quality and yield of tomatoes. First, we focus on six common tomato leaf disease images and text descriptions, creating a Tomato Leaf Disease Image-Text Retrieval Dataset (TLDITRD), introducing image-text retrieval into the field of tomato leaf disease retrieval. Then, utilizing ViT and BERT models, we extract detailed image features and sequences of textual features, incorporating contextual information from image-text pairs. To address errors in image-text retrieval caused by complex backgrounds, we propose Learnable Fusion Attention (LFA) to amplify the fusion of textual and image features, thereby extracting substantial semantic insights from both modalities. To delve further into the semantic connections across various modalities, we propose a False Negative Elimination-Adversarial Negative Selection (FNE-ANS) approach. This method aims to identify adversarial negative instances that specifically target false negatives within the triplet function, thereby imposing constraints on the model. To bolster the model's capacity for generalization and precision, we propose Adversarial Regularization (AR). This approach involves incorporating adversarial perturbations during model training, thereby fortifying its resilience and adaptability to slight variations in input data. Experimental results show that, compared with existing ultramodern models, LAFANet outperformed existing models on TLDITRD dataset, with top1, top5, and top10 reaching 83.3% and 90.0%, and top1, top5, and top10 reaching 80.3%, 93.7%, and 96.3%. LAFANet offers fresh technical backing and algorithmic insights for the retrieval of tomato leaf disease through image-text correlation.

2.
Sci Total Environ ; 754: 142137, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32916495

ABSTRACT

The persistence and ecotoxicity of carbendazim residues pose a potential risk to environmental ecology and human health. Here, a novel and highly efficient carbendazim-degrading bacterium Rhodococcus sp. CX-1, capable of utilizing carbendazim as its sole source of carbon and energy, was isolated from contaminated soil. The biodegradation characteristics and metabolic pathways were studied by mass spectrometry, genomic annotation, and transcriptome analysis. The degradation rate of carbendazim by strain CX-1 was 3.98-9.90 mg/L/h under different conditions, and the optimum degradation conditions were 40 °C and pH 7.0. The addition of carbon sources (glucose, fructose, and sucrose, 100 mg/L) could accelerate carbendazim degradation. HPLC-MS/MS identification suggested that carbendazim is first hydrolyzed into 2-aminobenzimidazole and then to 2-hydroxybenzimidazole, and is ultimately mineralized to carbon dioxide. The genome of strain CX-1 contained 6,511,628 bp nucleotides, 2 linear plasmids, 2 circular plasmids, and 6437 protein coding genes. Genome annotation and transcriptome analysis indicated that carbendazim degradation may be regulated by the degradation genes harbored in the chromosome and in plasmid 2, and two different degradation pathways of carbendazim by imidazole ring cleavage or benzene ring cleavage were predicted. This study provided new insight to reveal the biodegradation mechanism of carbendazim; furthermore, strain CX-1 is a promising bioresource for carbendazim bioremediation.


Subject(s)
Rhodococcus , Benzimidazoles , Biodegradation, Environmental , Carbamates , Gene Expression Profiling , Rhodococcus/genetics , Tandem Mass Spectrometry
3.
Pest Manag Sci ; 76(3): 907-916, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31441991

ABSTRACT

BACKGROUND: In order to reduce application dosage of carbendazim (CBD), the effects of different droplet sizes and application rate on initial deposition, retention rate, and field control efficacy of CBD in the pepper plant (Capsicum annuum L.) were studied under laboratory and field conditions. RESULTS: Based on eight types of nozzles at six concentrations of 646.8, 582.2, 517.5, 414.0, 310.5, and 258.7 g a.i./hm2 , the initial deposition amount of CBD in the pepper plant showed a first increased and then decreased trend with the increasing application dosages. The initial deposition amount of CBD in the pepper leaves and stems was highest when using the nozzle ST110-03 at 200 µm volume median diameter (VMD) and 350 L/hm2 application rate. HPLC-MS/MS analysis revealed that CBD was first converted to 2-aminobenzimidazole, which then transformed into benzimidazole and 2-hydroxybenzimidazole by deamination and hydroxylation, and ultimately mineralized to carbon dioxide and water via the cleavage of the imidazole ring in pepper plant. The dissipation rate of CBD was fruits > roots/stems > leaves > soils. After 7 days of application, the field efficacy of CBD at six concentrations on pepper anthracnose (Colletotrichum spp.) were 94.1%, 91.3%, 82.3%, 76.5%, 47.0%, and 41.2%, respectively. CONCLUSION: The results revealed the deposition and dissipation characteristics of CBD, and the minimum effective dosage on pepper anthracnose decreased to 80% of the minimum recommended dose in the open field pepper ecosystem. The study will contribute to the CBD reduction by improving its utilization rate in the pepper-field ecosystem. © 2019 Society of Chemical Industry.


Subject(s)
Capsicum , Benzimidazoles , Carbamates , Ecosystem , Fungicides, Industrial , Tandem Mass Spectrometry
4.
Bull Environ Contam Toxicol ; 102(4): 550-554, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30778615

ABSTRACT

The adsorption and desorption behaviors of carbendazim (CBD) and thiamethoxam (TMX) were systematically studied in five different agricultural soils. The adsorption and desorption isotherms of CBD and TMX in the five different soils were fitted well by the Freundlich model. The Freundlich adsorption coefficient (Kfads) and Freundlich desorption coefficient (Kfdes) of CBD in the five different soils were 1.46-19.53 and 1.81-3.33, respectively. The corresponding values of TMX were 1.19-4.03 and 2.07-6.45, respectively. The adsorption affinity and desorption ability of the five different soils for CBD and TMX depended mainly on soil organic matter content (OMC) and cation exchange capacity (CEC). Desorption hysteresis occurred in the desorption process of CBD and TMX in the five different agricultural soils, especially for TMX. It is concluded that the adsorption-desorption ability of CBD was much higher than that of TMX in the five different agricultural soils, which was attributed to soil OMC and CEC.


Subject(s)
Agriculture , Benzimidazoles/chemistry , Carbamates/chemistry , Fungicides, Industrial/chemistry , Insecticides/chemistry , Soil/chemistry , Thiamethoxam/chemistry , Adsorption , Soil Pollutants/analysis
5.
Sci Total Environ ; 572: 1203-1212, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27524727

ABSTRACT

The degradation characteristics of carbendazim (CBD) and chlortetracycline (CTC) in individual and combined treatments, and dynamics of soil microbial structural and functional diversity as well as their potential relations were studied during three repeated treatments using different concentrations. The results showed that the degradation half-life of CBD at concentrations of 3mg/kg and 6mg/kg obviously increased, but that of CTC at levels of 1mg/kg and 10mg/kg decreased with increasing treatment frequency. Soil microbial activity and functional diversity displayed the suppression trend in CBD treatment and the suppression-recovery-stimulation trend in CTC and CBD+CTC treatments, which were consistent with the findings of decreased degradation rate of CBD and increased degradation rate of CTC. 16S amplicon sequencing analysis revealed five potentially dominant CTC-resistant microbial genera including Bacillus, Actinobacillus, Pseudomonas, Mycobacterium, and Corynebacterium, which may mainly carry major facilitator superfamily transporter protein, ribosomal protection protein, and other proteins encoded by tetA, tetB, tetC, tetH, tetL, tetM, tetO, tetV, tetW, tetX, tetZ, tet33, and tet39. These five dominant genera may jointly contribute to the elevated bacterial community resistance to CTC. Our findings provided a better understanding of microbial community structure and function changes in repeatedly treated soils with CBD and CTC.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacteria/drug effects , Benzimidazoles/metabolism , Carbamates/metabolism , Chlortetracycline/metabolism , Drug Resistance, Bacterial , Microbiota , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Benzimidazoles/pharmacology , Carbamates/pharmacology , Chlortetracycline/pharmacology
6.
Dalton Trans ; 44(17): 7854-61, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25820378

ABSTRACT

Two series of phosphors, α-Sr2(1-x)Dy2xP2O7 and α-Sr2(1-2x)Dy2xLi2xP2O7, with different x values were synthesized successfully using a conventional solid-state method at high temperature for the first time, and their luminescence properties were investigated comparatively. The effect of Li(+) ions on the luminescence properties of Dy(3+) in α-Sr2P2O7 host, including luminescence intensity, optimal doping concentration, concentration quenching mechanism, and decay behavior, was discussed in detail by considering the defect generation in α-Sr2P2O7:Dy(3+), the charge compensation of Li(+) ions and the role of Li2CO3 as solid flux expected in phosphors. The obtained excitation and emission spectra indicate that these as-prepared phosphors can be excited by ultraviolet light and show white light emission due to the combination of the (4)F9/2→(6)H15/2 and (4)F9/2→(6)H13/2 transitions of Dy(3+) ions. The CIE chromaticity coordinates and color correlated temperature of Dy(3+) emission in the phosphor α-Sr2(1-2x)Dy2xLi2xP2O7 (x = 0.03) with optimal fluorescence intensity was also calculated. The present work could be helpful for understanding the effect of the charge compensator (e.g. Li(+) ion) on the luminescent properties of phosphors with non-equivalent ion-displacement and the design of novel phosphors by efficiently taking advantage of charge compensator (e.g. Li(+) ion).

7.
Molecules ; 18(12): 14935-47, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24304587

ABSTRACT

Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs). Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP), a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-ß-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.


Subject(s)
Cellular Senescence/drug effects , Valproic Acid/pharmacology , Acetylation/drug effects , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/genetics , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Histones/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Phosphorylation/drug effects , Retinoblastoma Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...