Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(7): 103853, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38795515

ABSTRACT

Short-beak and dwarf syndrome (SBDS) is caused by infection with novel goose parvovirus (NGPV), which leads to intestinal dysbiosis, developmental delay, short beak, lameness, and paralysis in ducks and is the cause of skeletal health problems. NGPV infection can cause intestinal microbial disturbances, but it is still unclear whether the intestinal microbiota affects the pathogenicity of NGPV. Here, the effects of intestinal microbiota on NGPV-induced SBDS in Cherry Valley ducks were assessed by establishing a duck model for gut microflora depletion/reestablishment through antibiotics (ABX) treatment/fecal microbiota transplanted (FMT). By measuring body weight, beak length, beak width and tarsal length, we found that SBDS clinical symptoms were alleviated in ducks treated with ABX, but not in FMT ducks. Next, we conducted a comprehensive analysis of bone metabolism, gut barrier integrity, and inflammation levels using quantitative real-time PCR (qPCR), enzyme linked immunosorbent assay (ELISA), biochemical analysis and histological analysis. The results showed that ABX treatment improved bone quality reduced bone resorption, mitigated tissue lesions, protected intestinal barrier integrity, and inhibited systemic inflammation in NGPV-infected ducks. Moreover, cecal microflora composition and short-chain fatty acids (SCFAs) production were examined by bacterial 16S rRNA sequencing and gas chromatography. The results revealed that ABX treatment mitigated the decreased abundance of Firmicutes and Bacteroidota in NGPV-infected ducks, as well as increased SCFAs production. Furthermore, ABX treatment reduced the mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) and nuclear factor κB (NF-κB) expression, which are correlated with systemic inflammation in SBDS ducks. These findings suggested that intestinal microflora depletion alleviated NGPV-induced SBDS by maintaining intestinal homeostasis, inhibiting inflammatory response and alleviating bone resorption. These results provide evidence for the pivotal role of intestinal microbiota in the process of SBDS and contribute a theoretical basis for the feasibility of microecological preparation as a method to control SBDS.

2.
Heliyon ; 9(12): e22641, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046176

ABSTRACT

The extent of immune-mediated hepatic damage (such as in viral hepatitis) is characterised by the downregulation of cytochrome P450s (CYPs), a class of drug-metabolising enzymes. However, whether this downregulation aids liver cells in maintaining their homeostasis or whether the damage is aggravated remains largely unexplored. Herein, we evaluated the effects of phosphorylation mediated by the protein kinase C (PKC)/cAMP-response element binding protein (CREB) and nitration mediated by inducible nitric oxide synthase (iNOS) on the downregulation of CYP2E1 during immune-mediated liver injury. Additionally, we investigated the regulatory mechanism mediated by the nuclear factor κB (NF-κB). The rat model of immune-mediated liver injury was replicated by administering a single i.v. injection of Bacillus Calmette-Guerin (BCG, 125 mg/kg) vaccine and three i.p. injections of ammonium pyrrolidine dithiocarbamate (25, 50, 100 mg/kg/d, days 11, 12, and 13); blood was then collected on day 14. Subsequently, the livers were extracted to identify the different pharmacokinetic and biochemical indicators involved in the process. Our study reports new findings on the dependence between PKC-mediated CREB phosphorylation in the anti-inflammatory pathway and nitration emergency induced by iNOS in pro-inflammatory pathways in the NF-κB pathway. The interaction of these two pathways leads to the downregulation and recovery of CYP2E1, thus alleviating inflammation and nitration stress. Our results confirm that BCG-mediated downregulation of CYP2E1 is linked to iNOS-induced nitration and PKC/NF-κB-mediated CREB phosphorylation, and that NF-κB is an important molecular target in this process. These findings suggest that the downregulation of CYP2E1 may be an autonomous process characteristic of liver cells, helping them adapt to environmental changes, alleviate further hypoxia in inflamed tissues, and minimise exposure to toxic and harmful metabolites.

3.
Sci Rep ; 13(1): 17425, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833431

ABSTRACT

In this study, we investigated the effect of Hippophae rhamnoides L. (HRP) on the activity of CYP2D6 via the CAMP/PKA/NF-κB pathway in rats with Bacille Calmette-Guerin (BCG)-induced immunological liver injury. BCG (125 mg/kg) was injected to establish the rat model of liver injury. HRP was administered intragastrically for one week as the intervention drug. Proteomics techniques were used to analyze protein expression levels, obtaining a comprehensive understanding of the liver injury process. ELISA or western blotting was used to detect specific protein levels. Dextromethorphan was detected using high-performance liquid chromatography to reflect the metabolic activity of CYP2D6. BCG downregulated the expression of CYP2D6, cAMP, PKA, IκB, and P-CREB and upregulated that of NF-κB, IL-1ß, TNF-α, and CREB in the liver; HRP administration reversed these effects. Therefore, HRP may restore the metabolic function of the liver by reversing the downregulation of CYP2D6 through inhibition of NF-κB signal transduction and regulation of the cAMP/PKA/CREB/CYP2D6 pathway. These findings highlight the role of HRP as an alternative clinical drug for treating hepatitis B and other immune-related liver diseases.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hippophae , Rats , Animals , NF-kappa B/metabolism , Hippophae/metabolism , Cytochrome P-450 CYP2D6
4.
Iran J Pharm Res ; 21(1): e129483, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36937209

ABSTRACT

Background: The use of police breath alcohol detectors in rat breath alcohol detection experiments has always been a challenge because of the small lung capacity and inability of rats to actively inhale. However, the method of using gas chromatography to detect blood alcohol concentration is time-consuming, complex, relatively expensive, and cannot achieve on-site detection and multi-point unlimited non-invasive detection. Objectives: In this study, a laboratory method was validated for rat breath ethanol concentration (BrAC) measurement to estimate blood ethanol concentration (BAC) in rats. Methods: The rats were placed in a gas collection bottle, the breath sample was drawn out with a syringe, and injected into the mouthpiece of the breath alcohol detector through a rubber tube. The results were immediately detected and automatically converted to BAC. Male rats were randomly divided into three groups. The control group received an intraperitoneal injection of normal saline, the liver injury group received an intraperitoneal injection of 50% Carbon tetrachloride (CCL4 1 mL.kg-1), and the induction group received an intraperitoneal injection of phenobarbital sodium (75 mg.kg-1). Western blot analysis was used to detect the protein expression of CYP2E1. Similar grouping and experimental methods were used for female rats. Results: This method was reproducible. The metabolic activity of CYP2E1 was downregulated in the injury group and upregulated in the induction group, which was consistent with the results obtained for CYP2E1 protein expression. Conclusions: Our results confirmed that the rat gas cylinder breath alcohol assay can be used for multiple detections with immediate and non-invasive determination of alcohol metabolizing capacity. This is important for studies that require repeated assessment of blood alcohol levels.

5.
PLoS One ; 15(9): e0238810, 2020.
Article in English | MEDLINE | ID: mdl-32915856

ABSTRACT

Previous studies reported that sea buckthorn (Hippophae rhamnoides L., Elaeagnaceae, HRP) exhibits hepatoprotective effects via its anti-inflammatory and antioxidant properties as well as its inhibitory effects on collagen synthesis. However, it is unclear whether this hepatoprotective effect is also achieved by regulating liver drug metabolism enzyme pathways. Herein, we examined the regulatory effect of HRP on cytochrome P450 3A (CYP3A) in rats with immune liver injury, and explored the molecular mechanism of its hepatoprotective effect. Rat models of immunological liver injury were induced by intravenous injections of Bacillus Calmette-Guerin (BCG; 125 mg kg-1; 2 wks). Specific protein levels were detected by ELISA or western blot, and CYP3A mRNA expression was detected by RT-PCR. High-performance liquid chromatography (HPLC) detected relative changes in CYP3A metabolic activity based on the rates of 1-hydroxylation of the probe drug midazolam (MDZ). BCG pretreatment (125 mg kg-1) significantly down-regulated liver CYP3A protein expression compared with the control, metabolic activity, and transcription levels while up-regulating liver NF-κB, IL-1ß, TNF-α and iNOS. HRP intervention (ED50: 78 mg kg-1) moderately reversed NF-κB, inflammatory cytokines, and iNOS activation in a dose-dependent manner (P < 0.05), and suppressed CYP3A down-regulation (P < 0.05); thereby partially alleviating liver injury. During immune liver injury, HRP may reverse CYP3A down-regulation by inhibiting NF-κB signal transduction, and protect liver function, which involves regulation of enzymes transcriptionally, translationally and post-translationally. The discovery that NF-κB is a molecular target of HRP may initiate the development and optimization of a clinical therapeutic approach to mitigate hepatitis B and other immunity-related liver diseases.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Down-Regulation/drug effects , Elaeagnaceae/metabolism , Mycobacterium bovis/physiology , NF-kappa B/metabolism , Animals , Cytochrome P-450 CYP3A/metabolism , Interleukin-1beta/metabolism , Liver/drug effects , Liver/metabolism , Liver/microbiology , Liver/pathology , Male , Nitric Oxide Synthase Type II/metabolism , Protein Processing, Post-Translational/drug effects , Rats , Rats, Sprague-Dawley , Transcription, Genetic/drug effects , Tumor Necrosis Factor-alpha/metabolism
6.
PLoS One ; 14(12): e0225531, 2019.
Article in English | MEDLINE | ID: mdl-31881060

ABSTRACT

Cytochrome P450 2E1 (CYP2E1) plays an important role in both alcohol-induced and immune-mediated liver injury. However, the mechanism underlying CYP2E1 transcriptional regulation has not been clarified. This study focused on the NF-κB-mediated transcriptional regulation of rat CYP2E1 by two independent signaling pathways in alcohol-induced and immune-mediated liver injury rat models. Male Sprague-Dawley rats were used in pharmacokinetic, molecular pharmacology, and morphology experiments. A rat model of alcohol-induced liver injury (AL) was established by feeding an ethanol-containing diet (42 g/kg/day) for 5 weeks as indicated. A rat immune-mediated liver injury (IM) model was established by the sequential injection of bacillus Calmette-Guérin (BCG, 125 mg/kg, once) via the tail vein after test day 21 and 10 µg/kg LPS 13 days later. HPLC, real-time PCR, western blot and ELISA analyses were performed. CYP2E1 expression was enhanced during the process of alcohol-induced liver injury (increased by 56%, P < 0.05) and significantly reduced during that of immune-mediated liver injury (reducedby52%, P < 0.05). NF-κB was activated in both the AL and IM groups (increased by 56% and76%, respectively, P < 0.05). Compared to those in the livers of AL model rats, the interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and iNOS levels in IM model rat livers were increased (increased by 26%, 21% and 101%, respectively, P < 0.05). The differential changes in CYP2E1 in the processes of alcohol-induced and immune-mediated liver injury may result from the differential expression of inflammatory cytokines and iNOS after NF-κB activation, leading to the NF-κB-mediated transcriptional regulation of rat CYP2E1 by two independent signaling pathways.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Cytochrome P-450 CYP2E1/metabolism , Liver/pathology , NF-kappa B/metabolism , Signal Transduction/physiology , Animals , Chemical and Drug Induced Liver Injury/etiology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Ethanol/toxicity , Humans , Liver/immunology , Male , Mycobacterium bovis/immunology , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Transcriptional Activation , Up-Regulation
7.
Pharm Biol ; 52(11): 1460-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24963944

ABSTRACT

CONTEXT: Ammonium pyrrolidine dithiocarbamate (PDTC) is a potent inhibitor of nuclear factor-κB (NF-κB). Recent studies have shown that NF-κB plays an essential role in the regulation of genes whose products are involved in the pathogenesis of immunological liver injury. OBJECTIVE: To study the function of NF-κB in immunological liver injury of rat model and its effect on CYP2E1 content and metabolic activity. MATERIALS AND METHODS: The present study investigated the effect of passivating NF-κB activation on CYP2E1 using Bacillus calmette Guérin (BCG)-induced immunological liver injury in Sprague-Dawley rats measured in terms of enzyme levels. The degree of hepatic injury of rats was measured by using biochemical parameters, hepatic tissue pathological changes, and physiological parameters. Protein localization of liver NF-κB was detected by immunohistochemical assay. Western blot analysis was used to detect the protein expression of NF-κB, IκBα, iNOS, and CYP2E1. The content of CYP2E1 of homogenate in the rat liver was detected by ELISA assay and the enzyme kinetics of CYP2E1 probe drug chlorzoxazone was evaluated by high-performance liquid chromatography (HPLC) assay. RESULTS: The results showed that BCG-pretreatment (125 mg/kg) significantly (p < 0.01) increased the weight of liver and spleen (increased by 70% and 248%, respectively), serum levels of alanine transarninase (ALT) and aspartate aminotransferase (AST) (increased by 200% and 75.8%, respectively), the expression of NF-κB and iNOS (increased by 228% and 303%, respectively), and decreased CYP2E1 content and metabolic activity (p < 0.05). Administration of PDTC (50, 100, and 200 mg/kg) reversed above hepatic injury stimulated by BCG in vivo. Moreover, PDTC (ED50: 76 mg/kg) dose dependently inhibited down-regulation of CYP2E1 (p < 0.05). CONCLUSION: Passivation of NF-κB can inhibit the down-regulation of CYP2E1 and iNOS to induce in rat liver tissue with immunological liver injury; NF-κB may be involved in the CYP2E1 regulation through iNOS.


Subject(s)
Cytochrome P-450 CYP2E1/metabolism , Liver Diseases/drug therapy , Liver Diseases/immunology , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Pyrrolidines/therapeutic use , Thiocarbamates/therapeutic use , Animals , Liver Diseases/metabolism , Male , Mycobacterium bovis , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Thiocarbamates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...