Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Mol Ther ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

2.
Am J Surg Pathol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726848

ABSTRACT

Mycobacterial spindle cell pseudotumors (MSPs) are a rare and diagnostically challenging manifestation of non-tuberculous mycobacterial (NTM) infections. Proper recognition of these pseudotumors is important because they are treatable and benign. In this study, we evaluated the morphologic patterns of MSPs to improve their pathologic identification. Clinical and morphologic features of 14 MSPs were analyzed. Histologic factors evaluated included the architectural growth pattern of spindled or epithelioid macrophages, granulomas and their location within the lesion, neutrophilic microabscesses, multinucleated giant cells, necrosis, and effacement of background tissue. The composition of inflammatory infiltrates, organism density by acid-fast staining, and stromal changes were also assessed. In addition, 8 of 14 cases underwent molecular microbiology identification by a clinical amplicon-sequencing assay for non-tuberculous mycobacteria. MSP sites included 2 bowel, 10 lymph nodes, 1 liver, and 1 extremity. Cases with available clinical history (n=10) all occurred in immunocompromised patients. All demonstrated effacement of normal structures with spindled cells arranged in a storiform or fascicular architectural pattern. In addition, all cases showed lymphocytic inflammation, with prominent concurrent neutrophilic inflammation in 50% (7/14) of cases. Other morphologic findings included foamy histiocytes (64%, 9/14), peripherally situated granulomas (21%, 3/14), and neutrophilic microabscesses (21%, 3/14). All tested cases were positive for NTM by PCR methods. Mycobacterium avium was the most commonly isolated pathogen (6/8). Mycobacterial spindle cell pseudotumors show predominantly spindled morphology that may be mistaken as a neoplasm. Surgical pathologists who evaluate lymph nodes, soft tissue, and gastrointestinal tissues should be aware of this spindled tumefactive phenomenon in the setting of immunocompromised patients. Recognition of key morphologic features of neutrophilic inflammation, peripheral granulomas, or foamy histiocytes within a spindled lesion can help guide the pathologist to a correct diagnosis of an inflammatory process secondary to infection rather than a spindle cell neoplasm. Accurate diagnosis to facilitate appropriate antimicrobial and/or surgical therapy requires a comprehensive evaluation combining clinical, histopathologic, and microbiological findings.

3.
Sci Immunol ; 9(95): eadi4191, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728412

ABSTRACT

Conventional dendritic cells (DCs) are essential mediators of antitumor immunity. As a result, cancers have developed poorly understood mechanisms to render DCs dysfunctional within the tumor microenvironment (TME). After identification of CD63 as a specific surface marker, we demonstrate that mature regulatory DCs (mregDCs) migrate to tumor-draining lymph node tissues and suppress DC antigen cross-presentation in trans while promoting T helper 2 and regulatory T cell differentiation. Transcriptional and metabolic studies showed that mregDC functionality is dependent on the mevalonate biosynthetic pathway and its master transcription factor, SREBP2. We found that melanoma-derived lactate activates SREBP2 in tumor DCs and drives conventional DC transformation into mregDCs via homeostatic or tolerogenic maturation. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promoted antitumor CD8+ T cell activation and suppressed melanoma progression. CD63+ mregDCs were found to reside within the lymph nodes of several preclinical tumor models and in the sentinel lymph nodes of patients with melanoma. Collectively, this work suggests that a tumor lactate-stimulated SREBP2-dependent program promotes CD63+ mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME.


Subject(s)
Dendritic Cells , Lactic Acid , Mice, Inbred C57BL , Signal Transduction , Sterol Regulatory Element Binding Protein 2 , Dendritic Cells/immunology , Animals , Mice , Humans , Sterol Regulatory Element Binding Protein 2/immunology , Lactic Acid/metabolism , Signal Transduction/immunology , Melanoma/immunology , Melanoma/pathology , Disease Progression , Immune Tolerance/immunology , Female , Cell Line, Tumor , Tumor Microenvironment/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology
4.
Hum Pathol ; 148: 60-65, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734079

ABSTRACT

Colitis is a common manifestation of immune checkpoint inhibitor (ICI) toxicity and can present with varied histologic patterns of inflammation, some of which have been shown to be associated with specific ICI drug types. Although the histologic features of ICI colitis seen at the time of diagnosis have been described, there have been few reports following these patients over time. We evaluated initial and follow-up biopsies in 30 patients with ICI colitis and found that 37% of patients developed a different pattern of injury on follow-up biopsy compared to the initial biopsy. Patients with a different inflammatory pattern were more likely to have restarted ICI therapy before their follow-up biopsy (64%) compared to those without a change in inflammatory pattern (11%; P < 0.01). The majority of these patients had changed ICI drug types (86%). Additionally, many cases changed to an inflammatory bowel disease (IBD)-like pattern (36%), raising a question of de novo IBD. However, all of our patients with an IBD-like pattern experienced sustained resolution of symptoms without steroids or other immunosuppressive medications following discontinuation of ICI therapy, consistent with a diagnosis of ICI toxicity. Our findings suggest that follow-up biopsies in patients with ICI colitis may show a different histology and that this does not necessarily warrant a change in the histologic diagnosis to another disease.

5.
Sci Total Environ ; 935: 173266, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759924

ABSTRACT

Soil microorganisms are often limited by nutrients, representing an important control of heterotrophic metabolic processes. However, how nutrient limitations relate to microbial community structure and stability remains unclear, which creates a knowledge gap to understanding microbial biogeography and community changes during forest restoration. Here, we combined an eco-enzymatic stoichiometry model and high-throughput DNA sequencing to assess the potential roles of nutrient limitation on microbial community structure, assembly, and stability along a forest restoration sequence in the Qinling Mountains, China. Results showed that nutrient limitations tended to decrease during the oak forest restoration. Carbon and phosphorus limitations enhanced community dissimilarity and significantly increased bacterial alpha diversity, but not fungal diversity. Stochastic assembly processes primarily structured both bacterial (average contribution of 74.73 % and 74.17 % in bulk and rhizosheath soils, respectively) and fungal (average contribution of 77.23 % and 72.04 % in bulk and rhizosheath soils, respectively) communities during forest restoration, with nutrient limitation also contributing to the importance of stochastic processes in the bacterial communities. The migration rate (m) for bacteria was 0.19 and 0.23, respectively in both bulk soil and rhizosheath soil, and was greater than that for the fungi (m was 1.19 and 1.41, respectively), indicating a stronger dispersal limitation for fungal communities. Finally, nutrient limitations significantly affected bacterial and fungal co-occurrence with more interconnections occurring among weakly nutrient-limited microbial taxa and nutrient limitations reducing community stability when nutrient availability changed during forest restoration. Our findings highlight the fundamental effects of nutrient limitations on microbial communities and their self-regulation under changing environmental resources.

6.
Vet Res ; 55(1): 52, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622656

ABSTRACT

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Subject(s)
Clostridium Infections , Animals , Mice , Clostridium Infections/veterinary , Clostridium perfringens , Interleukin-6 , Lipopolysaccharides , TOR Serine-Threonine Kinases , Trained Immunity , Tumor Necrosis Factor-alpha/metabolism
7.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38539841

ABSTRACT

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by the abnormal alteration of hormone levels such as FSH and E2. POI causes infertility, severe daily life disturbances, and long-term health risks. However, the underlying mechanism remains largely unknown. In this study, we found that POI is associated with the cellular senescence of ovarian granulosa cells, and TRIM28 mediates oxidative stress (OS)-induced cellular senescence in granulosa cells. Mechanistically, OS causes a decrease in TRIM28 protein levels in KGN cells. Subsequently, it triggers an increase in the levels of autophagy marker proteins ATG5 and LC3B-II, and the downregulation of P62. Abnormal autophagy induces an increase in the levels of cellular senescence markers γ-H2A.X, P16, and P21, provoking cellular senescence in vitro. The overexpression of ovarian TRIM28 through a microinjection of lentivirus attenuated autophagy, cellular senescence, and follicular atresia in the ovaries of POI mice and improved mouse fertility in vivo. Our study highlights the triggers for POI, where the reduction of TRIM28, which is regulated by reactive oxygen species, causes follicular atresia and POI via triggering autophagy and inducing granulosa cell senescence. Shedding light on TRIM28 may represent a potential intervention strategy for POI.

8.
Diagn Cytopathol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426360

ABSTRACT

This study presents two cases of lipid-rich pancreatic neuroendocrine tumors (PanNETs), a rare variant posing significant diagnostic challenges in fine needle aspiration (FNA) cytology and small biopsies. The first case involves an elderly male with a pancreatic tumor, displaying distinct cytoplasmic vacuoles, while the second case is a middle-aged male present with a pancreatic tail mass exhibiting foamy cytoplasm and eccentric nuclei, infiltrating in the stroma. Both cases did not exhibit typical morphologic features of PanNET but demonstrated cytomorphologic features and infiltrative growth patterns that mimicked adenocarcinoma. Further work-up demonstrated that both tumors were immunoreactive for synaptophysin and chromogranin, and were interpreted as well-differentiated, PanNET, lipid-rich variant. The study highlights the overlapping morphological features between lipid-rich PanNETs and other pancreatic neoplasms and underscores the importance of comprehensive cytological and immunohistochemical analysis for accurately diagnosing this variant, particularly due to the risk of misinterpreting it as pancreatic adenocarcinoma. Recognizing lipid-rich PanNETs is crucial for appropriate clinical management, as their identification can significantly impact treatment decisions and patient outcomes.

9.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38464138

ABSTRACT

Mortality rate increases with age and can accelerate upon extrinsic or intrinsic damage to individuals. Identifying factors and mechanisms that curb population mortality rate has wide-ranging implications. Here, we show that targeting the VHL-1 (Von Hippel-Lindau) protein suppresses C. elegans mortality caused by distinct factors, including elevated reactive oxygen species, temperature, and APOE4, the genetic variant that confers high risks of neurodegeneration in Alzheimer's diseases and all-cause mortality in humans. These mortality factors are of different physical-chemical nature, yet result in similar cellular dysfunction and damage that are suppressed by deleting VHL-1. Stabilized HIF-1 (hypoxia inducible factor), a transcription factor normally targeted for degradation by VHL-1, recapitulates the protective effects of deleting VHL-1. HIF-1 orchestrates a genetic program that defends against mitochondrial abnormalities, excess oxidative stress, cellular proteostasis dysregulation, and endo-lysosomal rupture, key events that lead to mortality. Genetic Vhl inhibition also alleviates cerebral vascular injury and synaptic lesions in APOE4 mice, supporting an evolutionarily conserved mechanism. Collectively, we identify the VHL-HIF axis as a potent modifier of APOE4 and mortality and propose that targeting VHL-HIF in non-proliferative animal tissues may suppress tissue injuries and mortality by broadly curbing cellular damage.

10.
Huan Jing Ke Xue ; 45(2): 992-1003, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471937

ABSTRACT

The process of vegetation restoration is often accompanied by significant changes in aboveground plant diversity. To explore the driving mechanism of litter nutrient-soil nutrient-enzyme activity stoichiometry on aboveground vegetation change is of great importance for maintaining regional biodiversity conservation and ecological stability. Taking typical abandoned farmland of different restoration years (1, 8, 16, 31, and 50 a) in the Qinling Mountains as the research object, the variation characteristics of plant community diversity during vegetation restoration were analyzed through field investigation. Litter nutrients, soil nutrients, and the activities of five extracellular enzymes, including ß-1,4-glucosidase (BG), cellobiohydrolase (CBH), ß-1,4-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acid phosphatase (AP), were determined. The characteristics of litter nutrients, soil nutrients, and enzyme stoichiometric ratios during vegetation restoration and the driving mechanism of plant diversity changes were discussed. The results showed that the plant community diversity index firstly decreased and then increased with the increase in vegetation restoration years, and the minimum was reached at 16 years after restoration. The results of principal component analysis showed that there were significant differences between total plant community diversity index and litter-soil-enzyme stoichiometric characteristics in different years of vegetation restoration. The plant community diversity index had a strong positive correlation with litter C∶P ratio and litter N∶P ratio but had a negative correlation with soil enzyme C∶P ratio (EEA C∶P). The results of redundancy analysis showed that soil EEA C∶P had the highest explanation rate of plant diversity changes during vegetation restoration (25.93%), followed by soil TP (5.94%), which was the key factor regulating plant diversity changes. In conclusion, plant species and quantity increased significantly in abandoned farmland in the middle part of the Qinling Mountains at the late stage of vegetation restoration. Changes in the soil environment affected microbial metabolic activities and thus changed enzyme activities. Litter-soil-soil extracellular enzymes affected the community environment and plant diversity through feedback and regulation. EEA C∶P and TP were the main driving factors of aboveground plant diversity change during vegetation restoration.


Subject(s)
Biodiversity , Plants , Soil , Soil Microbiology , Nutrients , Ecosystem , China
11.
J Chem Phys ; 160(5)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38341710

ABSTRACT

Within the confines of a densely populated cell nucleus, chromatin undergoes intricate folding, forming loops, domains, and compartments under the governance of topological constraints and phase separation. This coordinated process inevitably introduces interference between different folding strategies. In this study, we model interphase chromatins as block copolymers with hetero-hierarchical loops within a confined system. Employing dissipative particle dynamics simulations and scaling analysis, we aim to explain how the structure and distribution of loop domains modulate the microphase separation of chromatins. Our results highlight the correlation between the microphase separation of the copolymer and the length, heterogeneity, and hierarchically nested levels of the loop domains. This correlation arises from steric repulsion intrinsic to loop domains. The steric repulsion induces variations in chain stiffness (including local orientation correlations and the persistence length), thereby influencing the degree of phase separation. Through simulations of block copolymers with distinct groups of hetero-hierarchical loop anchors, we successfully reproduce changes in phase separation across diverse cell lines, under fixed interaction parameters. These findings, in qualitative alignment with Hi-C data, suggest that the variations of loop constraints alone possess the capacity to regulate higher-order structures and the gene expressions of interphase chromatins.


Subject(s)
Cell Nucleus , Chromatin , Polymers/chemistry
12.
Ecotoxicol Environ Saf ; 273: 116121, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38402792

ABSTRACT

In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 µg/mL) and TCS (15 µM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.


Subject(s)
Triclosan , Female , Humans , Reactive Oxygen Species/metabolism , Triclosan/toxicity , Triclosan/metabolism , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Microplastics/metabolism , Polystyrenes/toxicity , Polystyrenes/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Granulosa Cells/metabolism
13.
Neuropharmacology ; 248: 109863, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38325771

ABSTRACT

Tremendous progress has been made to develop the therapy of Alzheimer's disease (AD). Existing several anti-AD remedies, with certain limitations, are far from adequate. Evidence suggests that dihydroergocristine (DHEC) mesylate, one of the main components of Ergoloid mesylates, can reduce the production of amyloid-ß in vitro. However, the therapeutic effect of DHEC mesylate in AD and its underlying mechanism are still largely unknown. Herein, we characterized the pharmacological effect of DHEC mesylate in AD and found that the spatial memory disorders and Alzheimer-type pathologies were alleviated by DHEC mesylate administration. Moreover, we demonstrated that DHEC mesylate improved aberrant bisecting N-glycosylation, which was identified as a potential biomarker of AD. We further explored the underlying mechanism and confirmed that DHEC mesylate protected against AD via AMPK and ERK signaling, in which, AMPK was the dominant down-stream molecule of DHEC mesylate. In summary, our findings provide foundations for development of DHEC mesylate as a therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Dihydroergocristine , Glycosylation , AMP-Activated Protein Kinases , Amyloid beta-Peptides/metabolism , Mesylates/therapeutic use , tau Proteins
14.
PLoS Pathog ; 20(1): e1011918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241414

ABSTRACT

Bacterial persister cells, a sub-population of dormant phenotypic variants highly tolerant to antibiotics, present a significant challenge for infection control. Investigating the mechanisms of antibiotic persistence is crucial for developing effective treatment strategies. Here, we found a significant association between tolerance frequency and previous infection history in bovine mastitis. Previous S. aureus infection led to S. aureus tolerance to killing by rifampicin in subsequent infection in vivo and in vitro. Actually, the activation of trained immunity contributed to rifampicin persistence of S. aureus in secondary infection, where it reduced the effectiveness of antibiotic treatment and increased disease severity. Mechanically, we found that S. aureus persistence was mediated by the accumulation of fumarate provoked by trained immunity. Combination therapy with metformin and rifampicin promoted eradication of persisters and improved the severity of recurrent S. aureus infection. These findings provide mechanistic insight into the relationship between trained immunity and S. aureus persistence, while providing proof of concept that trained immunity is a therapeutic target in recurrent bacterial infections involving persistent pathogens.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Female , Cattle , Staphylococcus aureus/physiology , Rifampin/pharmacology , Rifampin/therapeutic use , Trained Immunity , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Bacteria
15.
J Hazard Mater ; 466: 133556, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262314

ABSTRACT

Metal contamination from mine waste is a widespread threat to soil health. Understanding of the effects of toxic metals from mine waste on the spatial patterning of rhizosphere enzymes and the rhizosphere microbiome remains elusive. Using zymography and high-throughput sequencing, we conducted a mesocosm experiment with mine-contaminated soil, to compare the effects of different concentrations of toxic metals on exoenzyme kinetics, microbial communities, and maize growth. The negative effects of toxic metals exerted their effects largely on enzymatic hotspots in the rhizosphere zone, affecting both resistance and the area of hotspots. This study thus revealed the key importance of such hotspots in overall changes in soil enzymatic activity under metal toxicity. Statistical and functional guild analysis suggested that these enzymatic changes and associated microbial community changes were involved in the inhibition of maize growth. Keystone species of bacteria displayed negative correlations with toxic metals and positive correlations with the activity of enzymatic hotspots, suggesting a potential role. This study contributes to an emerging paradigm, that changes both in the activity of soil enzymes and soil biota - whether due to substrate addition or in this case toxicity - are largely confined to enzymatic hotspot areas.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Soil/chemistry , Bacteria/genetics , Metals/analysis , Rhizosphere , Soil Microbiology , Soil Pollutants/analysis , Metals, Heavy/analysis
17.
Cell Rep ; 42(8): 112951, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37556321

ABSTRACT

Little is known about how microbiota regulate innate-like γδ T cells or how these restrict their effector functions within mucosal barriers, where microbiota provide chronic stimulation. Here, we show that microbiota-mediated regulation of γδ17 cells is binary, where microbiota instruct in situ interleukin-17 (IL-17) production and concomitant expression of the inhibitory receptor programmed cell death protein 1 (PD-1). Microbiota-driven expression of PD-1 and IL-17 and preferential adoption of a PD-1high phenotype are conserved for γδ17 cells across multiple mucosal barriers. Importantly, microbiota-driven PD-1 inhibits in situ IL-17 production by mucosa-resident γδ17 effectors, linking microbiota to their simultaneous activation and suppression. We further show the dynamic nature of this microbiota-driven module and define an inflammation-associated activation state for γδ17 cells marked by augmented PD-1, IL-17, and lipid uptake, thus linking the microbiota to dynamic subset-specific activation and metabolic remodeling to support γδ17 effector functions in a microbiota-dense tissue environment.


Subject(s)
Interleukin-17 , Microbiota , Humans , Interleukin-17/metabolism , Programmed Cell Death 1 Receptor , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Inflammation/metabolism
18.
Mod Pathol ; 36(11): 100298, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544363

ABSTRACT

Postinfantile giant cell hepatitis (PIGCH) is a rare hepatitis pattern in adults with variable etiologies and clinical outcomes. We conducted a multi-institutional retrospective study to define the clinicopathologic characteristics of patients with PIGCH. A total of 70 PIGCH cases were identified and reviewed for pathological features, including fibrosis, cholestasis, inflammation, steatosis, necrosis, and apoptosis, as well as the distribution of giant cells and the maximum number of giant cells per high-power field. Demographic and clinical data, including age, sex, laboratory results, etiologies, and follow-up results, were recorded. Among the 70 cases, 40% (28/70) were associated with autoimmune liver diseases, followed by 9 (13%) with unknown etiology, 8 (11%) with viral infection, 5 (7%) with medications, 5 with combined etiologies, and 4 (6%) with malignancies (mostly chronic lymphocytic leukemia). Notably, another 16% were de novo PIGCH in liver allografts, most of which occurred after a rejection event. During follow-up, 26 (37%) patients died of the disease and 44 (63%) were alive. Deceased patients were characterized by older age (mean age, 54.9 vs 45.5 years; P = .02), higher alkaline phosphatase level (mean value, 253.3U/L vs 166.3 U/L; P = .03), higher fibrosis stage (stage 3-4 vs stage 0-2, 57.7% vs 29.6%; P = .03), being more likely to have de novo PIGCH after transplantation (23.1% vs 11.4%; P = .04), and being less likely to have primary autoimmune liver disease etiology (26.9% vs 47.7%; P = .04). These results indicate that PIGCH is a rare pattern of liver injury associated with different etiologies and variable clinical outcomes. Autoimmune liver disease with PIGCH is associated with better survival, whereas de novo PIGCH in allografts is associated with poorer survival. Older age, higher alkaline phosphatase level, and advanced fibrosis are adverse prognostic factors.


Subject(s)
Alkaline Phosphatase , Hepatitis , Adult , Humans , Middle Aged , Retrospective Studies , Liver/pathology , Hepatitis/etiology , Hepatitis/pathology , Fibrosis , Allografts/pathology
19.
Adv Sci (Weinh) ; 10(27): e2301940, 2023 09.
Article in English | MEDLINE | ID: mdl-37493331

ABSTRACT

Sperm-induced Ca2+ rise is critical for driving oocyte activation and subsequent embryonic development, but little is known about how lasting Ca2+ oscillations are regulated. Here it is shown that NLRP14, a maternal effect factor, is essential for keeping Ca2+ oscillations and early embryonic development. Few embryos lacking maternal NLRP14 can develop beyond the 2-cell stage. The impaired developmental potential of Nlrp14-deficient oocytes is mainly caused by disrupted cytoplasmic function and calcium homeostasis due to altered mitochondrial distribution, morphology, and activity since the calcium oscillations and development of Nlrp14-deficient oocytes can be rescued by substitution of whole cytoplasm by spindle transfer. Proteomics analysis reveal that cytoplasmic UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is significantly decreased in Nlrp14-deficient oocytes, and Uhrf1-deficient oocytes also show disrupted calcium homeostasis and developmental arrest. Strikingly, it is found that the mitochondrial Na+ /Ca2+ exchanger (NCLX) encoded by Slc8b1 is significantly decreased in the Nlrp14mNull oocyte. Mechanistically, NLRP14 interacts with the NCLX intrinsically disordered regions (IDRs) domain and maintain its stability by regulating the K27-linked ubiquitination. Thus, the study reveals NLRP14 as a crucial player in calcium homeostasis that is important for early embryonic development.


Subject(s)
Calcium , Nucleoside-Triphosphatase , Semen , Humans , Male , Calcium/metabolism , Homeostasis/physiology , Oocytes/metabolism , Semen/metabolism , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Ubiquitination , Animals , Mice , Nucleoside-Triphosphatase/metabolism
20.
Genome Res ; 33(8): 1354-1368, 2023 08.
Article in English | MEDLINE | ID: mdl-37491077

ABSTRACT

The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin from Hi-C data. CTG produces a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understanding of the alterations of genomic structures under different cellular conditions. The genomic structure yielded by CTG serves as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between gene-gene and corresponding protein-protein physical interactions, as well as transcription correlation, is revealed. We also find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space. These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as transcription, gene regulation, and even regulatory networking through affecting protein-protein interactions.


Subject(s)
Chromatin , Gene Regulatory Networks , Chromatin/genetics , Gene Expression Regulation , Chromosomes , DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...