Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 29(6): 1805-1812, 2018 Jun.
Article in Chinese | MEDLINE | ID: mdl-29974688

ABSTRACT

The SanJiang Plain is one of the most concentrated and contiGuous area of marshes, which plays an irreplaceable role in maintaining regional ecological security. Based on the 3S technology, we examined the changes in land use and landscape pattern of the SanJiang Plain from 1980 to 2010. The results showed that marshland area lost 7135 km2, with a loss rate of 59.1%. The paddy area increased 18010 km2, with a growth rate of 610.1%. The results of landscape indices analysis showed that the number of patches increased, the landscape fragmentation became stronger, the landscape heterogeneity increased, and the different landscape types became homogenized. The CLUE-S model was validated based on the five different periods of land use maps during 1980-2010. The Kappa index between the simulation and actual measurement at the time scale of 30 years was 0.71, indicating that the model was suitable for 30 years simulation in the study area. The future wetland changes in the SanJiang Plain from 2010 to 2030 was simulated with validated CLUE-S models, including historical development scenario, planning scenario, and ecological restoration scenario. The simulation results showed that the marsh land would decrease 2515.44 km2 and the paddy area would increase 19656.24 km2 in the historical development scenario. The marsh land would decrease 303.28 km2, but the paddy area would increase 1392.08 km2 in the planning scenario. The marsh land would increase 3585.61 km2 and the paddy area would increase 289.72 km2 in the ecological restoration scenario. The landscape patterns of the three scenarios were estimated using landscape indices. The results showed that the landscape pattern fragmentation would become more and more serious in the historical development scenario. The landscape pattern would have no signifi-cant changes in the planning scenario. The wetland area and connectivity would increase, the different landscape types would become balanced, and the landscape pattern would be gradually optimized in the ecological restoration scenario.


Subject(s)
Conservation of Natural Resources , Wetlands , China , Ecology , Ecosystem , Models, Theoretical
2.
Ying Yong Sheng Tai Xue Bao ; 26(12): 3788-94, 2015 Dec.
Article in Chinese | MEDLINE | ID: mdl-27112020

ABSTRACT

The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P < 0.05). It indicated that wetland in the sub-watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.


Subject(s)
Carbon Cycle , Carbon/analysis , Environmental Monitoring , Water/chemistry , Agriculture , China , Forests , Geographic Information Systems , Rivers , Seasons , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...