Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36139891

ABSTRACT

Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential, some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes. It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous DNA damage that the enzyme normally handles. We review the enzymatic and other activities of Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1 inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein. Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+ counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases where this issue may be important, it is advisable that more specific endpoints than cell survival be tested for establishing mechanism.

2.
Autophagy ; 18(12): 2946-2968, 2022 12.
Article in English | MEDLINE | ID: mdl-35311460

ABSTRACT

Macroautophagy/autophagy is a conserved cellular mechanism to degrade unneeded cytoplasmic proteins and organelles to recycle their components, and it is critical for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Whereas autophagy is essential for early development of embryos, no information exists regarding its functions during the transition from naive-to-primed pluripotency. Here, by using an in vitro transition model of ESCs to epiblast-like cells (EpiLCs), we find that dynamic changes in ATG7-dependent autophagy are critical for the naive-to-primed transition, and are also necessary for germline specification. RNA-seq and ATAC-seq profiling reveal that NANOG acts as a barrier to prevent pluripotency transition, and autophagy-dependent NANOG degradation is important for dismantling the naive pluripotency expression program through decommissioning of naive-associated active enhancers. Mechanistically, we found that autophagy receptor protein SQSTM1/p62 translocated into the nucleus during the pluripotency transition period and is preferentially associated with K63 ubiquitinated NANOG for selective protein degradation. In vivo, loss of autophagy by ATG7 depletion disrupts peri-implantation development and causes increased chromatin association of NANOG, which affects neuronal differentiation by competitively binding to OTX2-specific neuroectodermal development-associated regions. Taken together, our findings reveal that autophagy-dependent degradation of NANOG plays a critical role in regulating exit from the naive state and marks distinct cell fate allocation during lineage specification.Abbreviations: 3-MA: 3-methyladenine; EpiLC: epiblast-like cell; ESC: embryonic stem cell; PGC: primordial germ cell.


Subject(s)
Autophagy , Embryonic Stem Cells , Embryonic Stem Cells/metabolism , Cell Differentiation , Germ Layers/metabolism , Chromatin/metabolism
3.
Aging (Albany NY) ; 11(23): 11504-11519, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31834867

ABSTRACT

Resveratrol (3,5,4'-trihydroxystilbene, RSV) is a natural potential anti-aging polyphenolic compound frequently used as a nutritional supplement against several diseases. However, the underlying mechanisms by which resveratrol regulates postovulatory aging of oocytes are still insufficiently known. In this study, we found that resveratrol could delay postovulatory aging and improve developmental competence of oocytes through activating selective mitophagy in the mouse. Resveratrol could maintain spindle morphology but it disturbed cortical granule (CG) distribution during oocyte aging. This might be due to upregulated mitophagy, since blocking mitophagy by cyclosporin A (CsA) treatment affected oocyte quality by damaging mitochondrial function and it decreased embryonic development. In addition, we also observed an involvement of FoxO3a in regulating mitophagy in aging oocytes following resveratrol treatment. Taken together, our results provide evidence that mitophagy induced by resveratrol is a potential mechanism to protect against postovulatory oocyte aging.


Subject(s)
Mitophagy/drug effects , Oocytes/drug effects , Ovulation/physiology , Resveratrol/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Cyclosporine/pharmacology , Female , Mice , Mice, Inbred ICR , Mitophagy/physiology , Oocytes/physiology
4.
Int J Genomics ; 2019: 6905194, 2019.
Article in English | MEDLINE | ID: mdl-31179312

ABSTRACT

The thymus is a lobulated unique lymphoid immune organ that plays a critical role in the selection, development, proliferation, and differentiation of T cells. The thymus of developing chickens undergoes continued morphological alterations; however, the biomolecular and transcriptional dynamics of the postnatal thymus in avian species is not clear yet. Therefore, the thymuses from chickens at different stages of development (at weeks 0, 1, 5, 9, 18, and 27) were used in the present study. The RNA-seq method was used to study the gene expression patterns. On average, 24120819 clean reads were mapped, differentially expressed genes (DEGs) were identified on the basis of log values (fold change), including 744 upregulated and 425 downregulated genes. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are PCNA, CCNA2, CCNB2, and CDK1. Thus, the current study revealed that during postnatal development, the thymus undergoes severe atrophy. Thymus structure was damaged and gene expression changed dramatically, especially at the 27th week of age. Moreover, we found significant changes of several signaling pathways such as the cytokine-cytokine receptor interaction and cell cycle signaling pathways. Hence, it may be inferred that those signaling pathways might be closely related to the postnatal chicken thymus development.

SELECTION OF CITATIONS
SEARCH DETAIL
...