Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3972, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730241

ABSTRACT

The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases, thereby facilitating the identification of alternative splicing events and isoform expressions. Recently, numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless, there remains a deficiency in comparative studies that systemically evaluate the performance of these tools, which are implemented with different algorithms, under various simulations that encompass potential influencing factors. In this study, we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data, which represented diverse sequencing platforms generated by an in-house simulator, RNA sequins (sequencing spike-ins) data, as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS, with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data.


Subject(s)
Algorithms , Alternative Splicing , RNA, Messenger , Sequence Analysis, RNA , Humans , RNA, Messenger/genetics , RNA, Messenger/analysis , Sequence Analysis, RNA/methods , RNA Isoforms/genetics , Software , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Protein Isoforms/genetics
2.
Mob DNA ; 15(1): 3, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303094

ABSTRACT

BACKGROUND: The CRISPR/Cas systems have emerged as powerful tools in genome engineering. Recent studies highlighting the crucial role of transposable elements (TEs) have stimulated research interest in manipulating these elements to understand their functions. However, designing single guide RNAs (sgRNAs) that are specific and efficient for TE manipulation is a significant challenge, given their sequence repetitiveness and high copy numbers. While various sgRNA design tools have been developed for gene editing, an optimized sgRNA designer for TE manipulation has yet to be established. RESULTS: We present CRISPR-TE, a web-based application featuring an accessible graphical user interface, available at https://www.crisprte.cn/ , and currently tailored to the human and mouse genomes. CRISPR-TE identifies all potential sgRNAs for TEs and provides a comprehensive solution for efficient TE targeting at both the single copy and subfamily levels. Our analysis shows that sgRNAs targeting TEs can more effectively target evolutionarily young TEs with conserved sequences at the subfamily level. CONCLUSIONS: CRISPR-TE offers a versatile framework for designing sgRNAs for TE targeting. CRISPR-TE is publicly accessible at https://www.crisprte.cn/ as an online web service and the source code of CRISPR-TE is available at https://github.com/WanluLiuLab/CRISPRTE/ .

3.
iScience ; 26(6): 106933, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378342

ABSTRACT

The global prevalence and burden of musculoskeletal (MSK) disorders are immense. Advancements in next-generation sequencing (NGS) have generated vast amounts of data, accelerating the research of pathological mechanisms and the development of therapeutic approaches for MSK disorders. However, scattered datasets across various repositories complicate uniform analysis and comparison. Here, we introduce MSdb, a database for visualization and integrated analysis of next-generation sequencing data from human musculoskeletal system, along with manually curated patient phenotype data. MSdb provides various types of analysis, including sample-level browsing of metadata information, gene/miRNA expression, and single-cell RNA-seq dataset. In addition, MSdb also allows integrated analysis for cross-samples and cross-omics analysis, including customized differentially expressed gene/microRNA analysis, microRNA-gene network, scRNA-seq cross-sample/disease integration, and gene regulatory network analysis. Overall, systematic categorizing, standardized processing, and freely accessible knowledge features MSdb a valuable resource for MSK research community.

4.
Nat Commun ; 14(1): 3646, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339952

ABSTRACT

Acquisition of new stem cell fates relies on the dissolution of the prior regulatory network sustaining the existing cell fates. Currently, extensive insights have been revealed for the totipotency regulatory network around the zygotic genome activation (ZGA) period. However, how the dissolution of the totipotency network is triggered to ensure the timely embryonic development following ZGA is largely unknown. In this study, we identify the unexpected role of a highly expressed 2-cell (2C) embryo specific transcription factor, ZFP352, in facilitating the dissolution of the totipotency network. We find that ZFP352 has selective binding towards two different retrotransposon sub-families. ZFP352 coordinates with DUX to bind the 2C specific MT2_Mm sub-family. On the other hand, without DUX, ZFP352 switches affinity to bind extensively onto SINE_B1/Alu sub-family. This leads to the activation of later developmental programs like ubiquitination pathways, to facilitate the dissolution of the 2C state. Correspondingly, depleting ZFP352 in mouse embryos delays the 2C to morula transition process. Thus, through a shift of binding from MT2_Mm to SINE_B1/Alu, ZFP352 can trigger spontaneous dissolution of the totipotency network. Our study highlights the importance of different retrotransposons sub-families in facilitating the timely and programmed cell fates transition during early embryogenesis.


Subject(s)
Retroelements , Transcription Factors , Animals , Mice , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Retroelements/genetics , Solubility , Transcription Factors/genetics , Transcription Factors/metabolism , Zygote/metabolism
5.
J Agric Food Chem ; 71(4): 1886-1895, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36657474

ABSTRACT

Cyclobutrifluram is a novel succinate dehydrogenase inhibitor (SDHI) developed by Syngenta and helps to inhibit Fusarium pseudograminearum. Here, the potential for cyclobutrifluram resistance in F. pseudograminearum and the resistance mechanism involved were evaluated. Baseline sensitivity of F. pseudograminearum to cyclobutrifluram was determined with a mean EC50 value of 0.0248 µg/mL. Fungicide adaption generated five resistant mutants, which possess a comparable or a slightly impaired fitness compared to corresponding parental isolates. This indicates that the resistance risk of F. pseudograminearum to cyclobutrifluram might be moderate. Cyclobutrifluram-resistant isolates also demonstrated resistance to pydiflumetofen but sensitivity to carbendazim, phenamacril, tebuconazole, fludioxonil, or pyraclostrobin. Additionally, point mutations H248Y in FpSdhB and A83V or R86K in FpSdhC1 were found in cyclobutrifluram-resistant F. pseudograminearum mutants. Molecular docking and overexpression transformation assay revealed that FpSdhBH248Y and FpSdhC1A83V or FpSdhC1R86K confer the resistance of F. pseudograminearum to cyclobutrifluram.


Subject(s)
Fungicides, Industrial , Fusarium , Point Mutation , Drug Resistance, Fungal/genetics , Succinate Dehydrogenase/genetics , Molecular Docking Simulation , Fungicides, Industrial/pharmacology , Fusarium/genetics , Plant Diseases
6.
Pest Manag Sci ; 79(4): 1593-1603, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36562252

ABSTRACT

BACKGROUND: Oxathiapiprolin, an oxysterol-binding protein inhibitor (OSBPI), shows unexceptionable inhibitory activity against plant pathogenic oomycetes. FRAC (Fungicide Resistance Action Committee) classifies it into the mode of action group F9 (lipid homeostasis and transfer/storage), but very little is known about the lipid metabolism of oomycete pathogens when subjected to oxathiapiprolin. RESULTS: In this study, seven lipid categories and 1435 lipid molecules were identified in Phytophthora sojae, among which glycerolipids, glycerophospholipids, and sphingolipids account for 30.10%, 50.59%, and 7.28%, respectively. These lipids were categorized into 31 subclasses, which varied to different extents when treated with oxathiapiprolin. A total of 11 lipid subclasses showed significant changes. Among them, 10 lipid subclasses, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylserine (PS), ceramide (Cer), triglyceride (TG), (o-acyl)-1-hydroxy fatty acid, diglycosylceramide, sphingoshine (So), and sitosterol ester, were significantly up-regulated, while digalactosyldiacylglycerol was the only lipid that was significantly down-regulated by a factor of almost three. These lipid molecules were further analyzed at the lipid species level. A total of 542 species were significantly altered when treated with oxathiapiprolin, including 212 glycerolipids [186 TG and 26 diglycerides (DG)], 167 glycerophospholipids (38 PC, 15 LPC, 19 LPE, seven PS, etc.), 156 sphingolipids (146 Cer, four So, etc.), and some other lipid molecules. Finally, from the orthogonal partial least-squares discrimination analysis model, variable importance for the projection score analysis showed that Cer, TG, and some glycerophospholipids contribute to the metabolic disorder when subjected to oxathiapiprolin. CONCLUSION: Glycerolipids, glycerophospholipids, and sphingolipids in P. sojae undergo significant changes with oxathiapiprolin treatment. These results provided valuable information for further understanding the function of the target protein and the mode of action of OSBPIs in oomycetes. © 2022 Society of Chemical Industry.


Subject(s)
Lipid Metabolism Disorders , Phytophthora , Humans , Lipid Metabolism , Lipidomics , Sphingolipids , Glycerophospholipids
7.
Anal Chem ; 94(50): 17725-17732, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36472242

ABSTRACT

Sensitively determining trace nucleic acid is of great significance for pathogen identification. Herein, a dynamic DNA nanosystem-integrated ratiometric electrochemical biosensor was proposed to determine human immunodeficiency virus-associated DNA fragment (HIV-DNA) with high sensitivity and selectivity. The dynamic DNA nanosystem was composed of a target recycling unit and a multipedal DNA walker unit. Both of them could be driven by a toehold-mediated strand displacement reaction, enabling an enzyme-free and isothermal amplification strategy for nucleic acid determination. The target recycling unit could selectively recognize HIV-DNA and activate the multipedal DNA walker unit to roll on the electrode surface, which would lead to bidirectional signal variation for ratiometric readout with cascade signal amplification. Benefiting from the synergistic effect of the dynamic DNA nanosystem and the ratiometric output mode, the ultrasensitive detection of HIV-DNA was achieved in a wide linear range of 6 orders of magnitude with a limit of detection of 36.71 aM. The actual usability of the proposed sensor was also verified in complex biological samples with acceptable performance. This dynamic DNA nanosystem-integrated ratiometric sensing strategy might be promising in the development of reliable point-of-care diagnostic devices for highly sensitive and selective pathogen identification.


Subject(s)
Biosensing Techniques , HIV Infections , Humans , Electrochemical Techniques , Nucleic Acid Amplification Techniques , DNA/genetics , Limit of Detection , Nucleic Acid Hybridization
8.
Pest Manag Sci ; 78(12): 5184-5190, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36136938

ABSTRACT

BACKGROUND: Gray mold caused by Botrytis cinerea is an airborne plant pathogen with a necrotrophic lifestyle that infects more than 200 crops worldwide. Florylpicoxamid is a second-generation picolinamide fungicide inspired by a natural product. Florylpicoxamid targets the Qi site of the mitochondrial cytochrome bc1 complex and is currently being registered in China for the control of gray mold in a variety of crops. Although a broad spectrum of activity and attributes have been reported for florylpicoxamid, little is known about its effectiveness against gray mold or its protective and curative properties. RESULTS: Florylpicoxamid exhibited substantial inhibitory activity against 12 tested species of plant-pathogenic fungi, with effective concentration for 50% growth inhibition (EC50 ) values ranging from 0.017 to 2.096 µg ml-1 . A total of 129 isolates of B. cinerea from ten regions were tested for their sensitivity to florylpicoxamid, and the mean EC50 value was 0.04 ± 0.017 µg ml-1 . Furthermore, florylpicoxamid was observed to substantially inhibit all developmental stages of B. cinerea, with mycelial development, sclerotium germination, germ tube elongation and conidial germination being restrained with an EC50 value of 0.051 ± 0.0072, 0.012 ± 0.0069, 0.019 ± 0.0041 and 0.0062 ± 0.0007 µg ml-1 , respectively. No cross-resistance was observed between florylpicoxamid and quinone outside inhibitor (QoI), methyl benzimidazole carbamates or succinate dehydrogenase inhibitor. Florylpicoxamid also exhibited protective and curative activity against the development of B. cinerea infection in tests on tomato fruits. At application rates of 90, 112.5 and 135 g a.i. ha-1 , florylpicoxamid was also observed to provide more-effective control than boscalid (300 g a.i. ha-1 ). CONCLUSION: This study demonstrated that the novel fungicide florylpicoxamid exhibits strong inhibitory activity against B. cinerea, regardless of the resistance profiles of those isolates to tested fungicides with different modes of action. This makes florylpicoxamid a powerful new solution to optimize gray mold control and manage fungicide resistance. © 2022 Society of Chemical Industry.


Subject(s)
Drug Resistance, Fungal , Fungicides, Industrial , Plant Diseases/microbiology , Botrytis , Fungicides, Industrial/pharmacology
9.
J Agric Food Chem ; 70(16): 4881-4888, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35416662

ABSTRACT

Fluoxapiprolin is a new oxysterol binding protein inhibitor (OSBPI), which showed excellent inhibitory activity to plant pathogenic oomycetes. Its resistance risk and mechanism in Phytophthora infestans are unclear. In the current study, the sensitivities of 103 P. infestans isolates to fluoxapiprolin were investigated, and a unimodal distribution with a mean EC50 value of 0.00035 µg/mL was observed. Four types of resistant mutants, with a resistance factor from 14 to more than 1000, and point mutations S768I+N837I, S768I+L860I, S768I, and I877F in PiORP1, were acquired using fungicide adaption. The fitness of the mutants was similar to or lower than that of the corresponding parental isolate. Positive cross-resistance was detected between fluoxapiprolin and oxathiapiprolin. The point mutations were verified in P. sojae homologue positions using the CRISPR/Cas9 genome editing system. Transformants containing S768I+N837I or S768I+L860I, showed high fluoxapiprolin resistance (RF > 1000). In conclusion, the risk of P. infestans resistance to fluoxapiprolin is moderate, and novel point mutation types S768I+N837I or S768I+L860I could cause high fluoxapiprolin resistance in P. infestans.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Fungicides, Industrial/pharmacology , Gene Editing , Plant Diseases , Point Mutation
10.
Nat Commun ; 13(1): 463, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075135

ABSTRACT

Germ cells are essential to pass DNA from one generation to the next. In human reproduction, germ cell development begins with the specification of primordial germ cells (PGCs) and a failure to specify PGCs leads to human infertility. Recent studies have revealed that the transcription factor network required for PGC specification has diverged in mammals, and this has a significant impact on our understanding of human reproduction. Here, we reveal that the Hominidae-specific Transposable Elements (TEs) LTR5Hs, may serve as TEENhancers (TE Embedded eNhancers) to facilitate PGC specification. LTR5Hs TEENhancers become transcriptionally active during PGC specification both in vivo and in vitro with epigenetic reprogramming leading to increased chromatin accessibility, localized DNA demethylation, enrichment of H3K27ac, and occupation of key hPGC transcription factors. Inactivation of LTR5Hs TEENhancers with KRAB mediated CRISPRi has a significant impact on germ cell specification. In summary, our data reveals the essential role of Hominidae-specific LTR5Hs TEENhancers in human germ cell development.


Subject(s)
Endogenous Retroviruses/physiology , Hominidae/virology , Reproduction , Retroelements , Retroviridae Infections/virology , Animals , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Germ Cells/physiology , Germ Cells/virology , Hominidae/genetics , Hominidae/physiology , Humans , Retroviridae Infections/physiopathology , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Nucleic Acids Res ; 50(D1): D1244-D1254, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34606616

ABSTRACT

T-cell receptors (TCRs) and B-cell receptors (BCRs) are critical in recognizing antigens and activating the adaptive immune response. Stochastic V(D)J recombination generates massive TCR/BCR repertoire diversity. Single-cell immune profiling with transcriptome analysis allows the high-throughput study of individual TCR/BCR clonotypes and functions under both normal and pathological settings. However, a comprehensive database linking these data is not yet readily available. Here, we present the human Antigen Receptor database (huARdb), a large-scale human single-cell immune profiling database that contains 444 794 high confidence T or B cells (hcT/B cells) with full-length TCR/BCR sequence and transcriptomes from 215 datasets. All datasets were processed in a uniform workflow, including sequence alignment, cell subtype prediction, unsupervised cell clustering, and clonotype definition. We also developed a multi-functional and user-friendly web interface that provides interactive visualization modules for biologists to analyze the transcriptome and TCR/BCR features at the single-cell level. HuARdb is freely available at https://huarc.net/database with functions for data querying, browsing, downloading, and depositing. In conclusion, huARdb is a comprehensive and multi-perspective atlas for human antigen receptors.


Subject(s)
Databases, Genetic , Receptors, Antigen, B-Cell/classification , Receptors, Antigen, T-Cell/classification , Software , B-Lymphocytes , Humans , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , Transcriptome/genetics , V(D)J Recombination/genetics
12.
Biochem Biophys Res Commun ; 578: 21-27, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34534741

ABSTRACT

Serine and arginine-rich splicing factor 3 (SRSF3), the smallest member of the Ser/Arg-rich (SR) RNA-binding protein family, regulates multiple aspects of post-transcriptional gene expression program. Although SRSF3 is essential for early embryo development, reprogramming, and pluripotency maintenance, the RNA targets and specificity of RNA recognition of SRSF3 are not well understood in human pluripotent stem cells. In this study, we used inducible TRIBE (targets of RNA binding sites by editing) to identify RNA targets and binding motifs of SRSF3 in human embryonic stem cells (hESCs). We identified 3888 confident binding sites of SRSF3, corresponding to 1222 gene targets. Our results showed that nearly half of the binding sites were distributed in exons, reflecting the alternative splicing function of SRSF3. Motif analysis demonstrated that two of the SRSF3 recognition sequences were the same as the motifs identified in mouse embryonic stem cells, suggesting the recognition sequences of SRSF3 may be conserved in mammals. Overall, our analyses revealed the RNA targets of SRSF3 and uncovered its RNA recognition specificity, providing a valuable resource for understanding the function of SRSF3 in human embryonic stem cells.


Subject(s)
Human Embryonic Stem Cells/metabolism , RNA Editing , RNA, Messenger/antagonists & inhibitors , Serine-Arginine Splicing Factors/metabolism , Animals , Cell Line , Databases, Genetic , Human Embryonic Stem Cells/cytology , Humans , Mice , RNA, Messenger/genetics , Serine-Arginine Splicing Factors/genetics
13.
Bioinformatics ; 37(17): 2741-2743, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-33532827

ABSTRACT

SUMMARY: With the advance of genomic sequencing techniques, chromatin accessible regions, transcription factor binding sites and epigenetic modifications can be identified at genome-wide scale. Conventional analyses focus on the gene regulation at proximal regions; however, distal regions are usually less focused, largely due to the lack of reliable tools to link these regions to coding genes. In this study, we introduce RAD (Region Associated Differentially expressed genes), a user-friendly web tool to identify both proximal and distal region associated differentially expressed genes (DEGs). With DEGs and genomic regions of interest (gROI) as input, RAD maps the up- and down-regulated genes associated with any gROI and helps researchers to infer the regulatory function of these regions based on the distance of gROI to differentially expressed genes. RAD includes visualization of the results and statistical inference for significance. AVAILABILITY AND IMPLEMENTATION: RAD is implemented with Python 3.7 and run on a Nginx server. RAD is freely available at https://labw.org/rad as online web service. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELECTION OF CITATIONS
SEARCH DETAIL
...