Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20156810

ABSTRACT

Knowledge of the host immune response after natural SARS-CoV-2 infection is essential for informing directions of vaccination and epidemiological control strategies against COVID-19. In this study, thirty-four COVID-19 patients were enrolled with 244 serial blood specimens (38.1% after hospital discharge) collected to explore the chronological evolution of neutralizing (NAb), total (TAb), IgM, IgG and IgA antibody in parallel. IgG titers reached a peak later (approximately 35 days postonset) than those of Nab, Ab, IgM and IgA (20[~]25 days postonset). After peaking, IgM levels declined with an estimated average half-life of 10.36 days, which was more rapid than those of IgA (51.25 days) and IgG (177.39 days). Based on these half-life data, we estimate that the median times for IgM, IgA and IgG to become seronegative are 4.59 (IQR 4.12-5.03), 7.78 (IQR 6.71-9.16) and 42.72 (IQR 33.75-47.96) months post disease onset. The relative contribution of IgM to NAb was higher than that of IgG (standardized {beta} regression coefficient: 0.53 vs 0.48), so the rapid decline in NAb may be attributed to the rapid decay of IgM in acute phase. However, the relative contribution of IgG to NAb increased and that of IgM further decreased after 6 weeks postonset. Its assumed that the decline rate of NAb might slow down to the same level as that of IgG over time. This study suggests that SARS-CoV-2 infection induces robust neutralizing and binding antibody responses in patients and that humoral immunity against SARS-CoV-2 acquired by infection may persist for a relatively long time.

2.
Acta Pharmaceutica Sinica ; (12): 2113-2121, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-780095

ABSTRACT

Annonaceous acetogenins (ACGs) are effective part extracted and separated from Annona squamosa seeds, they have good antitumor activity against a variety of tumor cells. However, the solubility of ACGs is poor with serious toxic and side effects, which greatly limits their application in clinical practice. In this study poloxamer 188 (P188) was selected as a drug carrier or a stabilizer to prepare ACGs nanosuspensions (ACGs-NSps) using anti-solvent precipitation. The nanosuspensions were examined via dynamic light scattering (DLS) method to examine size of the nanosuspensions. Transmission electron microscopy was used to observe their morphology. HPLC assay was used to measure their drug loading content and the in vitro drug release. The stability of ACGs-NSps at room temperature, in various physiological media and plasma, and the hemolytic test and lyophilization were all investigated. MTT assay was performed to study the cytotoxocity of ACGs-NSps against four tumor cell lines. 4T1 bearing tumor model was used to assess their in vivo antitumor therapeutic efficacy. The obtained ACGs-NSps were spherical, the average particle size was 169.4±1.25 nm, the polydispersity index (PDI) value was 0.130±0.020, the zeta potential was -19.8 mV and the drug loading content was 48.18%. ACGs-NSps were stable at room temperature for at least 15 days. They could be lyophilized in the presence of 0.5% glucose and 2.0% P188. ACGs-NSps showed sustained in vitro drug release, and the cumulative drug release reached 80.82% within 144 hours. ACGs-NSps maintained their particle size in various physiological media, and plasma with no hemolysis and then met demands of both oral and intravenous administration. In contrast to free ACGs, ACGs-NSps displayed significantly higher cytotoxicity against 4T1 (IC50, 0.892±0.124 μg·mL-1 vs 2.495±0.108 μg·mL-1, P 50, 0.747±0.051 μg·mL-1 vs 2.204±0.064 μg·mL-1, P 50, 2.265±0.081 μg·mL-1 vs 4.159±0.071 μg·mL-1, P 50, 0.473±0.024 μg·mL-1 vs 1.196±0.022 μg·mL-1, P in vivo study demonstrated that the daily oral administration of ACGs-NSps (3 mg·kg-1) resulted in higher tumor inhibition rate compared to ACGs/oil solution (67.23% vs 53.11%), comparable to the intravenous injection of 0.5 mg·kg-1 ACGs-NSps every other day (70.34%). Nanosuspensions effectively solved the problem of ACGs insolubility and difficulty in drug delivery. Using P188, a pharmaceutic adjuvant approved by FDA for iv injection, the resultant ACGs-NSps appear promising as an anti-tumor drug that can be used in clinic.

SELECTION OF CITATIONS
SEARCH DETAIL
...