Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 29(4): 1283-1290, 2018 Apr.
Article in Chinese | MEDLINE | ID: mdl-29726239

ABSTRACT

The experiment was conducted in the plots that had been enclosed for nearly 20 years in the hilly Loess Plateau region. The effects of trampling disturbance on the biological soil crust (biocrust) coverage, soil organic carbon (SOC), soil easily oxidizable carbon (SEOC), SOC mineralization amount and mineralization rate were investigated. The biocrust SOC mineralization potential after disturbance in different soil layers were simulated by a first-order kinetic equation. The results showed that the coverage of cyanobacteria biocrust and moss biocrust significantly decreased with the increases of disturbance intensity. Compared to no disturbance, the cyanobacteria coverage declined by 264%-339% and moss coverage declined by 46%-127%. Compared to no disturbance, SOC content in biocrust layer significantly decreased by 211%-300%. No significant difference was found among the five disturbance intensities. Disturbance increased SEOC content in biocrust layer, and the variation amounted to 1.5-3.4 g·kg-1, with 30%, 40% and 50% distur-bance differed significantly to no disturbance. Disturbance significantly increased biocrust SOC mineralization cumulative amount. However, SOC mineralization rate did not show any significant change. The SOC mineralization cumulative amount under 40% disturbance intensity increased by 77% compared to that under no disturbance. Disturbance significantly increased SOC mineralization potential in biocrust layer, but with no influence in 0-2 cm and 2-5 cm soil layers. The 40% disturbance intensity significantly increased SOC mineralization potential by 4.7 g·kg-1. The results of principal component analysis showed that SOC, SEOC, SMC and mineralization rate explained 76.7% of the variation of SOC mineralization potential in biocrust layer. Disturbance might be a main factor driving the increases of biocrust SOC mineralization potential in this area.


Subject(s)
Carbon/chemistry , Soil Microbiology , Soil/chemistry , Bryophyta , China , Cyanobacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...